本文主要是介绍【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Flink 系列文章
一、Flink 专栏
Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。
-
1、Flink 部署系列
本部分介绍Flink的部署、配置相关基础内容。 -
2、Flink基础系列
本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 -
3、Flik Table API和SQL基础系列
本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。 -
4、Flik Table API和SQL提高与应用系列
本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。 -
5、Flink 监控系列
本部分和实际的运维、监控工作相关。
二、Flink 示例专栏
Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。
两专栏的所有文章入口点击:Flink 系列文章汇总索引
文章目录
- Flink 系列文章
- 五、通过Temporal table实现维表数据join
- 1、说明
- 2、示例:将事实流与维表进行关联-ProcessingTime实现
- 3、示例:将事实流与维表进行关联-EventTime实现
- 4、示例:将事实流与维表进行关联-Kafka Source的EventTime实现
- 1)、bean定义
- 2)、序列化定义
- 3)、实现
本文着重介绍了Flink的时态表进行维表数据join操作,实现了三种方式。
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。
本文除了maven依赖外,还依赖kafka的环境。
本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)
五、通过Temporal table实现维表数据join
1、说明
Temporal table是持续变化表上某一时刻的视图,Temporal table function是一个表函数,传递一个时间参数,返回Temporal table这一指定时刻的视图。可以将维度数据流映射为Temporal table,事实流与这个Temporal table进行join,可以关联到某一个版本视图的维度数据。
该种方式维度数据量可以很大,维表数据实时更新,不依赖于第三方存储,并且提供不同版本的维表数据(应对维表信息更新)。截至版本Flink 1.17该种方式只能在Flink SQL API中使用。
关于时间参数,flink有三个时间,即eventtime、processingtime和injectiontime,常用的是eventtime和processingtime,本文介绍其实现方式。关于eventtime的实现,kafka与其他的数据源还有不同,本文单独介绍一下kafka的实现方式。
2、示例:将事实流与维表进行关联-ProcessingTime实现
package org.tablesql.join;import static org.apache.flink.table.api.Expressions.$;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;/** @Author: alanchan* @LastEditors: alanchan* @Description: 基于处理时间的时态表*/
public class TestJoinDimByProcessingTimeDemo {// 维表@Data@NoArgsConstructor@AllArgsConstructorpublic static class User {private Integer id;private String name;private Double balance;private Integer age;private String email;}// 事实表@Data@NoArgsConstructor@AllArgsConstructorpublic static class Order {private Integer id;private Integer uId;private Double total;}public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);// order 实时流 事实表DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999).map(o -> {String[] lines = o.split(",");return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));});// user 实时流 维度表DataStream<User> userDs = env.socketTextStream("192.168.10.42", 8888).map(o -> {String[] lines = o.split(",");return new User(Integer.valueOf(lines[0]), lines[1], Double.valueOf(lines[2]),Integer.valueOf(lines[3]), lines[4]);}).setParallelism(1);// 转变为TableTable orderTable = tenv.fromDataStream(orderDs, $("id"), $("uId"), $("total"), $("order_ps").proctime());Table userTable = tenv.fromDataStream(userDs, $("id"), $("name"), $("balance"), $("age"), $("email"),$("user_ps").proctime());// 定义一个TemporalTableFunctionTemporalTableFunction userDim = userTable.createTemporalTableFunction($("user_ps"), $("id"));// 注册表函数tenv.registerFunction("alan_userDim", userDim);// 关联查询Table result = tenv.sqlQuery("select o.* , u.name from " + orderTable + " as o , Lateral table (alan_userDim(o.order_ps)) u " +"where o.uId = u.id");// 打印输出DataStream resultDs = tenv.toAppendStream(result, Row.class);resultDs.print();// user 流数据(维度表)// 1001,alan,18,20,alan.chan.chn@163.com// 1002,alanchan,19,25,alan.chan.chn@163.com// 1003,alanchanchn,20,30,alan.chan.chn@163.com// 1004,alan_chan,27,20,alan.chan.chn@163.com// 1005,alan_chan_chn,36,10,alan.chan.chn@163.com// order 流数据// 26,1002,311// 27,1004,334// 28,1005,475// 控制台输出// 15> +I[26, 1002, 311.0, 2023-12-20T05:21:12.977Z, alanchan]// 11> +I[27, 1004, 334.0, 2023-12-20T05:21:50.898Z, alan_chan]// 5> +I[28, 1005, 475.0, 2023-12-20T05:21:57.559Z, alan_chan_chn]env.execute();}
}
3、示例:将事实流与维表进行关联-EventTime实现
/** @Author: alanchan* @LastEditors: alanchan* @Description: */
package org.tablesql.join;import static org.apache.flink.table.api.Expressions.$;import java.time.Duration;
import java.util.Arrays;
import java.util.List;import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;public class TestjoinDimByEventTimeDemo {// 维表@Data@NoArgsConstructor@AllArgsConstructorpublic static class User {private Integer id;private String name;private Double balance;private Integer age;private String email;private Long eventTime;}// 事实表@Data@NoArgsConstructor@AllArgsConstructorpublic static class Order {private Integer id;private Integer uId;private Double total;private Long eventTime;}final static List<User> userList = Arrays.asList(new User(1001, "alan", 20d, 18, "alan.chan.chn@163.com", 1L),new User(1002, "alan", 30d, 19, "alan.chan.chn@163.com", 10L),new User(1003, "alan", 29d, 25, "alan.chan.chn@163.com", 1L),new User(1004, "alanchan", 22d, 28, "alan.chan.chn@163.com", 5L),new User(1005, "alanchan", 50d, 29, "alan.chan.chn@163.com", 1698742362424L));final static List<Order> orderList = Arrays.asList(new Order(11, 1002, 1084d, 1L),new Order(12, 1001, 84d, 10L),new Order(13, 1005, 369d, 2L));public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);// order 实时流 事实表// DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)// .map(o -> {// String[] lines = o.split(",");// return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]), Long.valueOf(lines[3]));// })// .assignTimestampsAndWatermarks(WatermarkStrategy// .<Order>forBoundedOutOfOrderness(Duration.ofSeconds(10))// .withTimestampAssigner((order, rTimeStamp) -> order.getEventTime()));DataStream<Order> orderDs = env.fromCollection(orderList).assignTimestampsAndWatermarks(WatermarkStrategy.<Order>forBoundedOutOfOrderness(Duration.ofSeconds(10)).withTimestampAssigner((order, rTimeStamp) -> order.getEventTime()));// user 实时流 维度表// DataStream<User> userDs = env.socketTextStream("192.168.10.42", 8888)// .map(o -> {// String[] lines = o.split(",");// return new User(Integer.valueOf(lines[0]), lines[1], Double.valueOf(lines[2]), Integer.valueOf(lines[3]), lines[4], Long.valueOf(lines[3]));// })// .assignTimestampsAndWatermarks(WatermarkStrategy// .<User>forBoundedOutOfOrderness(Duration.ofSeconds(10))// .withTimestampAssigner((user, rTimeStamp) -> user.getEventTime()));DataStream<User> userDs = env.fromCollection(userList).assignTimestampsAndWatermarks(WatermarkStrategy.<User>forBoundedOutOfOrderness(Duration.ofSeconds(10)).withTimestampAssigner((user, rTimeStamp) -> user.getEventTime())); // 转变为TableTable orderTable = tenv.fromDataStream(orderDs, $("id"), $("uId"), $("total"), $("order_eventTime").rowtime());Table userTable = tenv.fromDataStream(userDs, $("id"), $("name"), $("balance"), $("age"), $("email"), $("user_eventTime").rowtime());tenv.createTemporaryView("alan_orderTable", orderTable);tenv.createTemporaryView("alan_userTable", userTable);// 定义一个TemporalTableFunctionTemporalTableFunction userDim = userTable.createTemporalTableFunction($("user_eventTime"), $("id"));// 注册表函数tenv.registerFunction("alan_userDim", userDim);// String sql = "select o.* from alan_orderTable as o ";// String sql = "select u.* from alan_userTable as u ";// String sql = "select o.*,u.name from alan_orderTable as o , alan_userTable as u where o.uId = u.id";String sql = "select o.*,u.name from alan_orderTable as o,Lateral table (alan_userDim(o.order_eventTime)) u where o.uId = u.id";// 关联查询Table result = tenv.sqlQuery(sql);// 打印输出DataStream resultDs = tenv.toAppendStream(result, Row.class);resultDs.print();// user 流数据(维度表)// userList // order 流数据// orderList// 控制台输出// 3> +I[12, 1001, 84.0, 1970-01-01T00:00:00.010, alan]env.execute();}
}
4、示例:将事实流与维表进行关联-Kafka Source的EventTime实现
1)、bean定义
package org.tablesql.join.bean;import java.io.Serializable;import lombok.Data;/** @Author: alanchan* @LastEditors: alanchan* @Description: */
@Data
public class CityInfo implements Serializable {private Integer cityId;private String cityName;private Long ts;
}
package org.tablesql.join.bean;import java.io.Serializable;import lombok.Data;/** @Author: alanchan* @LastEditors: alanchan* @Description: */
@Data
public class UserInfo implements Serializable {private String userName;private Integer cityId;private Long ts;
}
2)、序列化定义
package org.tablesql.join.bean;import java.io.IOException;
import java.nio.charset.StandardCharsets;import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;/** @Author: alanchan* @LastEditors: alanchan* @Description: */
public class CityInfoSchema implements DeserializationSchema<CityInfo> {@Overridepublic CityInfo deserialize(byte[] message) throws IOException {String jsonStr = new String(message, StandardCharsets.UTF_8);CityInfo data = JSON.parseObject(jsonStr, new TypeReference<CityInfo>() {});return data;}@Overridepublic boolean isEndOfStream(CityInfo nextElement) {return false;}@Overridepublic TypeInformation<CityInfo> getProducedType() {return TypeInformation.of(new TypeHint<CityInfo>() {});}}
package org.tablesql.join.bean;import java.io.IOException;
import java.nio.charset.StandardCharsets;import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;/** @Author: alanchan* @LastEditors: alanchan* @Description: */
public class UserInfoSchema implements DeserializationSchema<UserInfo> {@Overridepublic UserInfo deserialize(byte[] message) throws IOException {String jsonStr = new String(message, StandardCharsets.UTF_8);UserInfo data = JSON.parseObject(jsonStr, new TypeReference<UserInfo>() {});return data;}@Overridepublic boolean isEndOfStream(UserInfo nextElement) {return false;}@Overridepublic TypeInformation<UserInfo> getProducedType() {return TypeInformation.of(new TypeHint<UserInfo>() {});}}
3)、实现
/** @Author: alanchan* @LastEditors: alanchan* @Description: */
package org.tablesql.join;import static org.apache.flink.table.api.Expressions.$;import java.time.Duration;
import java.util.Properties;import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;
import org.tablesql.join.bean.CityInfo;
import org.tablesql.join.bean.CityInfoSchema;
import org.tablesql.join.bean.UserInfo;
import org.tablesql.join.bean.UserInfoSchema;public class TestJoinDimByKafkaEventTimeDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);// Kafka的ip和要消费的topic,//Kafka设置Properties props = new Properties();props.setProperty("bootstrap.servers", "192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092");props.setProperty("group.id", "kafkatest");// 读取用户信息KafkaFlinkKafkaConsumer<UserInfo> userConsumer = new FlinkKafkaConsumer<UserInfo>("user", new UserInfoSchema(),props);userConsumer.setStartFromEarliest();userConsumer.assignTimestampsAndWatermarks(WatermarkStrategy.<UserInfo>forBoundedOutOfOrderness(Duration.ofSeconds(0)).withTimestampAssigner((user, rTimeStamp) -> user.getTs()) // 该句如果不加,则是默认为kafka的事件时间);// 读取城市维度信息KafkaFlinkKafkaConsumer<CityInfo> cityConsumer = new FlinkKafkaConsumer<CityInfo>("city", new CityInfoSchema(), props);cityConsumer.setStartFromEarliest();cityConsumer.assignTimestampsAndWatermarks(WatermarkStrategy.<CityInfo>forBoundedOutOfOrderness(Duration.ofSeconds(0)).withTimestampAssigner((city, rTimeStamp) -> city.getTs()) // 该句如果不加,则是默认为kafka的事件时间);Table userTable = tableEnv.fromDataStream(env.addSource(userConsumer), $("userName"), $("cityId"), $("ts").rowtime());Table cityTable = tableEnv.fromDataStream(env.addSource(cityConsumer), $("cityId"), $("cityName"),$("ts").rowtime());tableEnv.createTemporaryView("userTable", userTable);tableEnv.createTemporaryView("cityTable", cityTable);// 定义一个TemporalTableFunctionTemporalTableFunction dimCity = cityTable.createTemporalTableFunction($("ts"), $("cityId"));// 注册表函数// tableEnv.registerFunction("dimCity", dimCity);tableEnv.createTemporarySystemFunction("dimCity", dimCity);Table u = tableEnv.sqlQuery("select * from userTable");// u.printSchema();tableEnv.toAppendStream(u, Row.class).print("user流接收到:");Table c = tableEnv.sqlQuery("select * from cityTable");// c.printSchema();tableEnv.toAppendStream(c, Row.class).print("city流接收到:");// 关联查询Table result = tableEnv.sqlQuery("select u.userName,u.cityId,d.cityName,u.ts " +"from userTable as u " +", Lateral table (dimCity(u.ts)) d " +"where u.cityId=d.cityId");// 打印输出DataStream resultDs = tableEnv.toAppendStream(result, Row.class);resultDs.print("\t关联输出:");// 用户信息格式:// {"userName":"user1","cityId":1,"ts":0}// {"userName":"user1","cityId":1,"ts":1}// {"userName":"user1","cityId":1,"ts":4}// {"userName":"user1","cityId":1,"ts":5}// {"userName":"user1","cityId":1,"ts":7}// {"userName":"user1","cityId":1,"ts":9}// {"userName":"user1","cityId":1,"ts":11}// kafka-console-producer.sh --broker-list server1:9092 --topic user// 城市维度格式:// {"cityId":1,"cityName":"nanjing","ts":15}// {"cityId":1,"cityName":"beijing","ts":1}// {"cityId":1,"cityName":"shanghai","ts":5}// {"cityId":1,"cityName":"shanghai","ts":7}// {"cityId":1,"cityName":"wuhan","ts":10}// kafka-console-producer.sh --broker-list server1:9092 --topic city// 输出// city流接收到::6> +I[1, beijing, 1970-01-01T00:00:00.001]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.004]// city流接收到::6> +I[1, shanghai, 1970-01-01T00:00:00.005]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.005]// city流接收到::6> +I[1, shanghai, 1970-01-01T00:00:00.007]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.007]// city流接收到::6> +I[1, wuhan, 1970-01-01T00:00:00.010]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.009]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.011]// 关联输出::12> +I[user1, 1, beijing, 1970-01-01T00:00:00.001]// 关联输出::12> +I[user1, 1, beijing, 1970-01-01T00:00:00.004]// 关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.005]// 关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.007]// 关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.009]env.execute("joinDemo");}}
以上,本文着重介绍了Flink的时态表进行维表数据join操作,实现了三种方式。
本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)
这篇关于【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!