【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)

2024-01-19 15:04

本文主要是介绍【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink 系列文章

一、Flink 专栏

Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。

  • 1、Flink 部署系列
    本部分介绍Flink的部署、配置相关基础内容。

  • 2、Flink基础系列
    本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。

  • 3、Flik Table API和SQL基础系列
    本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。

  • 4、Flik Table API和SQL提高与应用系列
    本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。

  • 5、Flink 监控系列
    本部分和实际的运维、监控工作相关。

二、Flink 示例专栏

Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。

两专栏的所有文章入口点击:Flink 系列文章汇总索引


文章目录

  • Flink 系列文章
  • 五、通过Temporal table实现维表数据join
    • 1、说明
    • 2、示例:将事实流与维表进行关联-ProcessingTime实现
    • 3、示例:将事实流与维表进行关联-EventTime实现
    • 4、示例:将事实流与维表进行关联-Kafka Source的EventTime实现
      • 1)、bean定义
      • 2)、序列化定义
      • 3)、实现


本文着重介绍了Flink的时态表进行维表数据join操作,实现了三种方式。

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文除了maven依赖外,还依赖kafka的环境。

本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)

五、通过Temporal table实现维表数据join

1、说明

Temporal table是持续变化表上某一时刻的视图,Temporal table function是一个表函数,传递一个时间参数,返回Temporal table这一指定时刻的视图。可以将维度数据流映射为Temporal table,事实流与这个Temporal table进行join,可以关联到某一个版本视图的维度数据。

该种方式维度数据量可以很大,维表数据实时更新,不依赖于第三方存储,并且提供不同版本的维表数据(应对维表信息更新)。截至版本Flink 1.17该种方式只能在Flink SQL API中使用。

关于时间参数,flink有三个时间,即eventtime、processingtime和injectiontime,常用的是eventtime和processingtime,本文介绍其实现方式。关于eventtime的实现,kafka与其他的数据源还有不同,本文单独介绍一下kafka的实现方式。

2、示例:将事实流与维表进行关联-ProcessingTime实现


package org.tablesql.join;import static org.apache.flink.table.api.Expressions.$;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;/** @Author: alanchan* @LastEditors: alanchan* @Description: 基于处理时间的时态表*/
public class TestJoinDimByProcessingTimeDemo {// 维表@Data@NoArgsConstructor@AllArgsConstructorpublic static class User {private Integer id;private String name;private Double balance;private Integer age;private String email;}// 事实表@Data@NoArgsConstructor@AllArgsConstructorpublic static class Order {private Integer id;private Integer uId;private Double total;}public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);// order 实时流 事实表DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999).map(o -> {String[] lines = o.split(",");return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));});// user 实时流 维度表DataStream<User> userDs = env.socketTextStream("192.168.10.42", 8888).map(o -> {String[] lines = o.split(",");return new User(Integer.valueOf(lines[0]), lines[1], Double.valueOf(lines[2]),Integer.valueOf(lines[3]), lines[4]);}).setParallelism(1);// 转变为TableTable orderTable = tenv.fromDataStream(orderDs, $("id"), $("uId"), $("total"), $("order_ps").proctime());Table userTable = tenv.fromDataStream(userDs, $("id"), $("name"), $("balance"), $("age"), $("email"),$("user_ps").proctime());// 定义一个TemporalTableFunctionTemporalTableFunction userDim = userTable.createTemporalTableFunction($("user_ps"), $("id"));// 注册表函数tenv.registerFunction("alan_userDim", userDim);// 关联查询Table result = tenv.sqlQuery("select o.* , u.name from " + orderTable + " as o  , Lateral table (alan_userDim(o.order_ps)) u " +"where o.uId = u.id");// 打印输出DataStream resultDs = tenv.toAppendStream(result, Row.class);resultDs.print();// user 流数据(维度表)// 1001,alan,18,20,alan.chan.chn@163.com// 1002,alanchan,19,25,alan.chan.chn@163.com// 1003,alanchanchn,20,30,alan.chan.chn@163.com// 1004,alan_chan,27,20,alan.chan.chn@163.com// 1005,alan_chan_chn,36,10,alan.chan.chn@163.com// order 流数据// 26,1002,311// 27,1004,334// 28,1005,475// 控制台输出// 15> +I[26, 1002, 311.0, 2023-12-20T05:21:12.977Z, alanchan]// 11> +I[27, 1004, 334.0, 2023-12-20T05:21:50.898Z, alan_chan]// 5> +I[28, 1005, 475.0, 2023-12-20T05:21:57.559Z, alan_chan_chn]env.execute();}
}

3、示例:将事实流与维表进行关联-EventTime实现

/** @Author: alanchan* @LastEditors: alanchan* @Description: */
package org.tablesql.join;import static org.apache.flink.table.api.Expressions.$;import java.time.Duration;
import java.util.Arrays;
import java.util.List;import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;public class TestjoinDimByEventTimeDemo {// 维表@Data@NoArgsConstructor@AllArgsConstructorpublic static class User {private Integer id;private String name;private Double balance;private Integer age;private String email;private Long eventTime;}// 事实表@Data@NoArgsConstructor@AllArgsConstructorpublic static class Order {private Integer id;private Integer uId;private Double total;private Long eventTime;}final static List<User> userList = Arrays.asList(new User(1001, "alan", 20d, 18, "alan.chan.chn@163.com", 1L),new User(1002, "alan", 30d, 19, "alan.chan.chn@163.com", 10L),new User(1003, "alan", 29d, 25, "alan.chan.chn@163.com", 1L),new User(1004, "alanchan", 22d, 28, "alan.chan.chn@163.com", 5L),new User(1005, "alanchan", 50d, 29, "alan.chan.chn@163.com", 1698742362424L));final static List<Order> orderList = Arrays.asList(new Order(11, 1002, 1084d, 1L),new Order(12, 1001, 84d, 10L),new Order(13, 1005, 369d, 2L));public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);// order 实时流 事实表// DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)//         .map(o -> {//             String[] lines = o.split(",");//             return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]), Long.valueOf(lines[3]));//         })//         .assignTimestampsAndWatermarks(WatermarkStrategy//                 .<Order>forBoundedOutOfOrderness(Duration.ofSeconds(10))//                 .withTimestampAssigner((order, rTimeStamp) -> order.getEventTime()));DataStream<Order> orderDs = env.fromCollection(orderList).assignTimestampsAndWatermarks(WatermarkStrategy.<Order>forBoundedOutOfOrderness(Duration.ofSeconds(10)).withTimestampAssigner((order, rTimeStamp) -> order.getEventTime()));// user 实时流 维度表// DataStream<User> userDs = env.socketTextStream("192.168.10.42", 8888)//         .map(o -> {//             String[] lines = o.split(",");//             return new User(Integer.valueOf(lines[0]), lines[1], Double.valueOf(lines[2]), Integer.valueOf(lines[3]), lines[4], Long.valueOf(lines[3]));//         })//         .assignTimestampsAndWatermarks(WatermarkStrategy//                 .<User>forBoundedOutOfOrderness(Duration.ofSeconds(10))//                 .withTimestampAssigner((user, rTimeStamp) -> user.getEventTime()));DataStream<User> userDs =  env.fromCollection(userList).assignTimestampsAndWatermarks(WatermarkStrategy.<User>forBoundedOutOfOrderness(Duration.ofSeconds(10)).withTimestampAssigner((user, rTimeStamp) -> user.getEventTime()));      // 转变为TableTable orderTable = tenv.fromDataStream(orderDs, $("id"), $("uId"), $("total"), $("order_eventTime").rowtime());Table userTable = tenv.fromDataStream(userDs, $("id"), $("name"), $("balance"), $("age"), $("email"), $("user_eventTime").rowtime());tenv.createTemporaryView("alan_orderTable", orderTable);tenv.createTemporaryView("alan_userTable", userTable);// 定义一个TemporalTableFunctionTemporalTableFunction userDim = userTable.createTemporalTableFunction($("user_eventTime"), $("id"));// 注册表函数tenv.registerFunction("alan_userDim", userDim);// String sql = "select o.* from alan_orderTable as o ";// String sql = "select u.* from alan_userTable as u ";// String sql = "select o.*,u.name from alan_orderTable as o , alan_userTable as u where o.uId = u.id";String sql = "select o.*,u.name from alan_orderTable as o,Lateral table (alan_userDim(o.order_eventTime)) u where o.uId = u.id";// 关联查询Table result = tenv.sqlQuery(sql);// 打印输出DataStream resultDs = tenv.toAppendStream(result, Row.class);resultDs.print();// user 流数据(维度表)// userList    // order 流数据// orderList// 控制台输出// 3> +I[12, 1001, 84.0, 1970-01-01T00:00:00.010, alan]env.execute();}
}

4、示例:将事实流与维表进行关联-Kafka Source的EventTime实现

1)、bean定义


package org.tablesql.join.bean;import java.io.Serializable;import lombok.Data;/** @Author: alanchan* @LastEditors: alanchan* @Description: */
@Data
public  class CityInfo implements Serializable {private Integer cityId;private String cityName;private Long ts;
}
package org.tablesql.join.bean;import java.io.Serializable;import lombok.Data;/** @Author: alanchan* @LastEditors: alanchan* @Description: */
@Data
public  class UserInfo implements Serializable {private String userName;private Integer cityId;private Long ts;
}

2)、序列化定义

package org.tablesql.join.bean;import java.io.IOException;
import java.nio.charset.StandardCharsets;import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;/** @Author: alanchan* @LastEditors: alanchan* @Description: */
public class CityInfoSchema implements DeserializationSchema<CityInfo> {@Overridepublic CityInfo deserialize(byte[] message) throws IOException {String jsonStr = new String(message, StandardCharsets.UTF_8);CityInfo data = JSON.parseObject(jsonStr, new TypeReference<CityInfo>() {});return data;}@Overridepublic boolean isEndOfStream(CityInfo nextElement) {return false;}@Overridepublic TypeInformation<CityInfo> getProducedType() {return TypeInformation.of(new TypeHint<CityInfo>() {});}}
package org.tablesql.join.bean;import java.io.IOException;
import java.nio.charset.StandardCharsets;import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;/** @Author: alanchan* @LastEditors: alanchan* @Description: */
public class UserInfoSchema implements DeserializationSchema<UserInfo> {@Overridepublic UserInfo deserialize(byte[] message) throws IOException {String jsonStr = new String(message, StandardCharsets.UTF_8);UserInfo data = JSON.parseObject(jsonStr, new TypeReference<UserInfo>() {});return data;}@Overridepublic boolean isEndOfStream(UserInfo nextElement) {return false;}@Overridepublic TypeInformation<UserInfo> getProducedType() {return TypeInformation.of(new TypeHint<UserInfo>() {});}}

3)、实现

/** @Author: alanchan* @LastEditors: alanchan* @Description: */
package org.tablesql.join;import static org.apache.flink.table.api.Expressions.$;import java.time.Duration;
import java.util.Properties;import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;
import org.tablesql.join.bean.CityInfo;
import org.tablesql.join.bean.CityInfoSchema;
import org.tablesql.join.bean.UserInfo;
import org.tablesql.join.bean.UserInfoSchema;public class TestJoinDimByKafkaEventTimeDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);// Kafka的ip和要消费的topic,//Kafka设置Properties props = new Properties();props.setProperty("bootstrap.servers", "192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092");props.setProperty("group.id", "kafkatest");// 读取用户信息KafkaFlinkKafkaConsumer<UserInfo> userConsumer = new FlinkKafkaConsumer<UserInfo>("user", new UserInfoSchema(),props);userConsumer.setStartFromEarliest();userConsumer.assignTimestampsAndWatermarks(WatermarkStrategy.<UserInfo>forBoundedOutOfOrderness(Duration.ofSeconds(0)).withTimestampAssigner((user, rTimeStamp) -> user.getTs()) // 该句如果不加,则是默认为kafka的事件时间);// 读取城市维度信息KafkaFlinkKafkaConsumer<CityInfo> cityConsumer = new FlinkKafkaConsumer<CityInfo>("city", new CityInfoSchema(), props);cityConsumer.setStartFromEarliest();cityConsumer.assignTimestampsAndWatermarks(WatermarkStrategy.<CityInfo>forBoundedOutOfOrderness(Duration.ofSeconds(0)).withTimestampAssigner((city, rTimeStamp) -> city.getTs()) // 该句如果不加,则是默认为kafka的事件时间);Table userTable = tableEnv.fromDataStream(env.addSource(userConsumer), $("userName"), $("cityId"), $("ts").rowtime());Table cityTable = tableEnv.fromDataStream(env.addSource(cityConsumer), $("cityId"), $("cityName"),$("ts").rowtime());tableEnv.createTemporaryView("userTable", userTable);tableEnv.createTemporaryView("cityTable", cityTable);// 定义一个TemporalTableFunctionTemporalTableFunction dimCity = cityTable.createTemporalTableFunction($("ts"), $("cityId"));// 注册表函数// tableEnv.registerFunction("dimCity", dimCity);tableEnv.createTemporarySystemFunction("dimCity", dimCity);Table u = tableEnv.sqlQuery("select * from userTable");// u.printSchema();tableEnv.toAppendStream(u, Row.class).print("user流接收到:");Table c = tableEnv.sqlQuery("select * from cityTable");// c.printSchema();tableEnv.toAppendStream(c, Row.class).print("city流接收到:");// 关联查询Table result = tableEnv.sqlQuery("select u.userName,u.cityId,d.cityName,u.ts " +"from userTable as u " +", Lateral table  (dimCity(u.ts)) d " +"where u.cityId=d.cityId");// 打印输出DataStream resultDs = tableEnv.toAppendStream(result, Row.class);resultDs.print("\t关联输出:");// 用户信息格式:// {"userName":"user1","cityId":1,"ts":0}// {"userName":"user1","cityId":1,"ts":1}// {"userName":"user1","cityId":1,"ts":4}// {"userName":"user1","cityId":1,"ts":5}// {"userName":"user1","cityId":1,"ts":7}// {"userName":"user1","cityId":1,"ts":9}// {"userName":"user1","cityId":1,"ts":11}// kafka-console-producer.sh --broker-list server1:9092 --topic user// 城市维度格式:// {"cityId":1,"cityName":"nanjing","ts":15}// {"cityId":1,"cityName":"beijing","ts":1}// {"cityId":1,"cityName":"shanghai","ts":5}// {"cityId":1,"cityName":"shanghai","ts":7}// {"cityId":1,"cityName":"wuhan","ts":10}// kafka-console-producer.sh --broker-list server1:9092 --topic city// 输出// city流接收到::6> +I[1, beijing, 1970-01-01T00:00:00.001]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.004]// city流接收到::6> +I[1, shanghai, 1970-01-01T00:00:00.005]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.005]// city流接收到::6> +I[1, shanghai, 1970-01-01T00:00:00.007]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.007]// city流接收到::6> +I[1, wuhan, 1970-01-01T00:00:00.010]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.009]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.011]//         关联输出::12> +I[user1, 1, beijing, 1970-01-01T00:00:00.001]//         关联输出::12> +I[user1, 1, beijing, 1970-01-01T00:00:00.004]//         关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.005]//         关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.007]//         关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.009]env.execute("joinDemo");}}

以上,本文着重介绍了Flink的时态表进行维表数据join操作,实现了三种方式。

本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)

这篇关于【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622794

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形