Python对Excel文件中不在指定区间内的数据加以去除的方法

2024-01-19 14:44

本文主要是介绍Python对Excel文件中不在指定区间内的数据加以去除的方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍基于Python语言,读取Excel表格文件,基于我们给定的规则,对其中的数据加以筛选,将不在指定数据范围内的数据剔除,保留符合我们需要的数据的方法。

首先,我们来明确一下本文的具体需求。现有一个Excel表格文件(在本文中我们就以.csv格式的文件为例),如下图所示。

其中,Excel表格文件具有大量的数据,每一列表示某一种属性每一行表示某一个样本;我们需要做的,就是对于其中的部分属性加以数据筛选——例如,我们希望对上图中第一列的数据进行筛选,将其中大于2或小于-1的部分选出来,并将每一个所选出的单元格对应的直接删除;同时,我们还希望对其他的属性同样加以筛选,不同属性筛选的条件也各不相同,但都是需要将不符合条件的单元格所在的整行都删除。最终,我们保留下来的数据,就是符合我们需要的数据,此时我们需要将其保存为一个新的Excel表格文件。

明白了需求,我们即可开始代码的撰写;本文用到的具体代码如下所示。

# -*- coding: utf-8 -*-
"""
Created on Wed Jun  7 15:40:50 2023@author: fkxxgis
"""import pandas as pdoriginal_file = "E:/01_Reflectivity/99_Model_Training/00_Data/02_Extract_Data/23_Train_model_NoH/Train_Model_1_NoH.csv"
result_file = "E:/01_Reflectivity/99_Model_Training/00_Data/02_Extract_Data/23_Train_model_NoH/Train_Model_1_NoH_New.csv"df = pd.read_csv(original_file)df = df[(df["inf"] >= -0.2) & (df["inf"] <= 18)]
df = df[(df["NDVI"] >= -1) & (df["NDVI"] <= 1)]
df = df[(df["inf_dif"] >= -0.2) & (df["inf_dif"] <= 18)]
df = df[(df["NDVI_dif"] >= -2) & (df["NDVI_dif"] <= 2)]
df = df[(df["soil"] >= 0)]
df = df[(df["inf_h"] >= -0.2) & (df["inf_h"] <= 18)]
df = df[(df["ndvi_h"] >= -1) & (df["ndvi_h"] <= 1)]
df = df[(df["inf_h_dif"] >= -0.2) & (df["inf_h_dif"] <= 18)]
df = df[(df["ndvi_h_dif"] >= -1) & (df["ndvi_h_dif"] <= 1)]df.to_csv(result_file, index = False)

下面是对上述代码每个步骤的解释:

  1. 导入必要的库:导入了pandas库,用于数据处理和操作。
  2. 定义文件路径:定义了原始文件路径original_file和结果文件路径result_file
  3. 读取原始数据:使用pd.read_csv()函数读取原始文件数据,并将其存储在DataFrame对象df中。
  4. 数据筛选:对DataFrame对象df进行多个条件的筛选操作,使用了逻辑运算符&和比较运算符进行条件组合。例如,其中的第一行df["inf"] >= -0.2df["inf"] <= 18就表示筛选出"inf"列的值在-0.218之间的数据;第二行df["NDVI"] >= -1df["NDVI"] <= 1则表示筛选出"NDVI"列的值在-11之间的数据,以此类推。
  5. 保存结果数据:使用to_csv()函数将筛选后的DataFrame对象df保存为新的.csv文件,保存路径为result_file,并设置index=False以避免保存索引列。

当然,如果我们需要对多个属性(也就是多个列)的数据加以筛选,除了上述代码中的方法,我们还可以用如下所示的代码,较之前述代码会更方便一些。

result_df = result_df[(result_df["blue"] > 0) & (result_df["blue"] <= 1) &(result_df["green"] > 0) & (result_df["green"] <= 1) &(result_df["red"] > 0) & (result_df["red"] <= 1) &(result_df["inf"] > 0) & (result_df["inf"] <= 1) &(result_df["NDVI"] > -1) & (result_df["NDVI"] < 1) &(result_df["inf_dif"] > -1) & (result_df["inf_dif"] < 1) &(result_df["NDVI_dif"] > -2) & (result_df["NDVI_dif"] < 2) &(result_df["soil"] >= 0) &(result_df["NDVI_dif"] > -2) & (result_df["NDVI_dif"] < 2) &(result_df["inf_h_dif"] > -1) & (result_df["inf_h_dif"] < 1) &(result_df["ndvi_h_dif"] > -1) & (result_df["ndvi_h_dif"] < 1)]

上述代码可以直接对DataFrame对象加以一次性的筛选,不用每筛选一次就保存一次了。

运行本文提及的代码,我们即可在指定的结果文件夹下获得数据筛选后的文件了。

至此,大功告成。

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓

这篇关于Python对Excel文件中不在指定区间内的数据加以去除的方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622756

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal