使用Rasa_core和Rasa_nls框架搭建问答机器人

2024-01-19 14:18

本文主要是介绍使用Rasa_core和Rasa_nls框架搭建问答机器人,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 前期准备

1.1 采集数据

采集有关南京博物院的有关数据,并进行中文分词(其中还需要用户自定义词典),其主要技术为:python爬虫、 jieba分词
内容如下:

在这里插入图片描述

1.2 构建语料库

根据已经采集好的数据构建语料库,其相关技术:MITIE工具

2 RASA_NLU

NLU模块的任务是:

  • 意图识别 (Intent):在句子级别进行分类,明确意图;
  • 实体识别(Entity):在词级别找出用户问题中的关键实体,进行实体槽填充(Slot Filling)。

2.1 进行rasa_nlu配置

配置文件如下:

language: "zh"pipeline:
- name: "nlp_mitie"model: "data/total_word_feature_extractor.dat"
- name: "tokenizer_jieba"user_dicts: "./user.dict"
- name: "ner_mitie"
- name: "ner_synonyms"
- name: "intent_entity_featurizer_regex"
- name: "intent_featurizer_mitie"
- name: "intent_classifier_sklearn"

2.2 准备训练数据

数据格式如下:
在这里插入图片描述

2.3 训练

代码如下:

  from rasa_nlu.training_data import load_datafrom rasa_nlu.config import RasaNLUModelConfigfrom rasa_nlu.model import Trainerfrom rasa_nlu import configfrom rasa_core.agent import Agentfrom rasa_core.policies.memoization import MemoizationPolicyfrom rasa_core.interpreter import RasaNLUInterpreterfrom rasa_core.policies.keras_policy import KerasPolicyfrom rasa_core.channels.console import ConsoleInputChannel# 训练模型def train():# 示例数据training_data = load_data('data/museum.json')# pipeline配置trainer = Trainer(config.load("sample_configs/museum_config.json"))trainer.train(training_data)model_directory = trainer.persist('./models/demo/')print(model_directory)predict(model_directory) # 识别意图def predict(model_directory):from rasa_nlu.model import Metadata, Interpreterinterpreter = Interpreter.load(model_directory)# 使用加载的interpreter处理文本print (interpreter.parse(u"这里有什么好看的展览"))if __name__=='__main__':train()

2.4测试rasa_nlu

在这里插入图片描述

3 RASA_CORE

3.1 定义domain.yml

格式如下:在这里插入图片描述

3.2 进行在线学习

代码如下:

   from rasa_nlu.training_data import load_datafrom rasa_nlu.config import RasaNLUModelConfigfrom rasa_nlu.model import Trainerfrom rasa_nlu import configfrom rasa_core.agent import Agentfrom rasa_core.policies.memoization import MemoizationPolicyfrom rasa_core.interpreter import RasaNLUInterpreterfrom rasa_core.policies.keras_policy import KerasPolicyfrom rasa_core.channels.console import ConsoleInputChanneldef train_online(input_channel=ConsoleInputChannel(),interpreter=RasaNLUInterpreter("models/demo/default/model_20180701-171646"),domain_file="data/domain.yml",training_data_file="data/museum_story.md"):agent = Agent(domain_file,policies=[MemoizationPolicy(), KerasPolicy()],interpreter=interpreter)agent.train_online(training_data_file,input_channel=input_channel,max_history=2,batch_size=50,epochs=200,max_training_samples=300)if __name__=='__main__':train_online()

训练过程如下:
在这里插入图片描述
最终得到stories.md
格式如下:
在这里插入图片描述

3.3 训练对话

采用LSTM网络训练对话
代码如下:

  from rasa_nlu.training_data import load_datafrom rasa_nlu.config import RasaNLUModelConfigfrom rasa_nlu.model import Trainerfrom rasa_nlu import configfrom rasa_core.agent import Agentfrom rasa_core.policies.memoization import MemoizationPolicyfrom rasa_core.interpreter import RasaNLUInterpreterfrom rasa_core.policies.keras_policy import KerasPolicyfrom rasa_core.channels.console import ConsoleInputChanneldef train_dialogue(domain_file="data/domain.yml",model_path="models/dialogue",training_data_file="stories.md"):agent = Agent(domain_file,policies=[MemoizationPolicy()])agent.train(training_data_file,max_history=3,epochs=100,batch_size=50,augmentation_factor=50,validation_split=0.2)agent.persist(model_path)if __name__=='__main__':train_dialogue()

4 微信展示

4.1 前言

由于域名需要备案(正在审查),所以微信小程序的接口不能申请成功,于是调用了微信的接口实现了对话过程。并且这里的代码将回答直接写进代码只作为测试使用,并没有去数据库查询数据。
代码如下:

  from wxpy import *import requestsbot = Bot(cache_path=True)friend =bot.friends().search('蒋双庆')[0]@bot.register()def reply_msg(msg):url = 'http://127.0.0.1:5005/conversations/default/parse'p = {'query':msg.text}r = requests.get(url, params=p)intent = r.json()['tracker']['latest_message']['intent']['name']if(intent=='greet'):msg.reply("您好!我是您的专属智慧导游“小博”!")elif(intent=='goodbye'):msg.reply('再见!')elif(intent=='person_search'):msg.reply('弗朗特斯克·毕勒克,19世纪末20世纪初捷克新艺术运动的杰出代表。他和其他艺术家一样“还生活于艺术”,又和其他艺术家不一样,用自己的艺术感觉在宗教和神秘中找寻曾经的安全感。')msg.reply_image('images/1.jpg')elif(intent=='exhibition_search'):msg.reply('近期有一场新的展览“毕勒克——捷克新艺术运动大师”,展出毕勒克绘画、雕塑等35件作品,展现了他“还生活于艺术”的创作理念,也表达了对人类命运的反思。')elif(intent=='painting_search'):msg.reply('弗朗特斯克·毕勒克的主要代表作有《主祷文》、《我的太阳》、《手》等等')elif(intent=='painting_description'):msg.reply('《主祷文》是耶稣基督传给门徒的祷告词,是礼拜仪式中通用的祈祷文。毕勒克认为艺术是生活的表现,生活因真理而存在,他的艺术态度即为宗教忏悔。创作这几幅《主祷文》主题的画作时毕勒克28岁,年轻的他在作品中表现出神奇的洞察力,并用奇特的表现手法,展露了与众不同的艺术风格。')msg.reply_image('images/2.jpg')embed()

4.2 对话过程展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于使用Rasa_core和Rasa_nls框架搭建问答机器人的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622689

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http