汽车制动系统基础

2024-01-18 00:30
文章标签 基础 系统 汽车 制动

本文主要是介绍汽车制动系统基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

汽车制动系统

发展现状

行车制动的发展路线经历了“纯机械制动-液压制动-电控制动-线控制动”四个阶段。与传统液压制动系统相比,线控制动系统摆脱对真空助力的依赖,并具有响应时间短、体积小、重量轻、可扩展性强等优点。根据制动执行机构的不同,线控制动拥有两条技术路线。目前,国内外主要研究的线控制动系统是电子液压制动(EHB)系统、电子机械制动(EMB)系统以及混合线控制动(HBBW)系统,其中尤以EHB系统发展最为成熟,目前已处于量产阶段。
与传统行车制动系统相比:
传统的行车制动系统一般是由真空助力系统、ESC、执行系统组成。制动时,驾驶员脚踏制动踏板产生的制动力通过真空助力器放大后推动主缸活塞运动给轮缸减压。从而实现车辆的制动。ESC系统在检测到车辆发生异常时,协调四个制动轮的制动力以及发动机的牵引力(如何协调),以保证车身整体的稳定。执行系统包括卡钳和制动盘,卡钳内部的液压活塞受到制动油的推理后,夹紧制动盘,实现车轮的摩擦制动。通常情况下,传统系统主动刹车的反应速度大概是 300-600ms, 而EHB线控制动的反应速度大概是 120-150ms,大概相差 300ms 左右,若按照 100km/h 的行车 速度,使用线控制动可以缩短 8.3m 的刹车距离,提高行车安全性。
电子机械制动EMB可靠性仍需提高,处于研究阶段。EMB体积小,响应速度快,能量回收效率更高,成为智能驾驶汽车研究的热点。与传统的制动系统的区别:完全摒弃的传统制动系统中的制动液和液压管路等部件,使用电子机械系统替代,制动踏板产生的信号直接输出到制动卡钳上,通过控制每个车轮上的电动制动卡钳来实现四个车轮的制动。其缺点是需要24v电源系统供电,并且EMB没有机械冗余,不能满足失效备份的需求。EMB系统在保留EHB系统的优势的同时,进一步释放了制动系统零部件的布置自由度,于此同时,四个轮端电机和卡钳取代相对复杂的液压系统也简化了整车装配和后期维护的流程和成本。于此同时,EMB 实现完全电子化,可以更好地和汽车其他电控系统整合,更能贴合汽车行业电动智能化趋势。

线控制动系统分类

制动方案对比

1.EHB制动系统

EHB是在传统的液压制动系统的基础上发展而来的。EHB线控制动主要在传统的真空助力制动的基础上,将真空助力升级为电子助力,保留了ESC和液压制动执行部分,从而形成了ESC和电子助力的Two-Box线性制动方案,要是将助力系统、主缸、ESP/ESC合二为一,共用一个ECU,就是One-Box方案。EHB线控使用电机取代了真空助力器,从而减少了自车车身重量以及燃油消耗。
在这里插入图片描述

2.EMB制动系统

EMB制动原理图
• EMB系统完全摒弃了传统制动系统的制动液及液压管路等部件,由电机驱动制动器产生制动力,是真正意义上 的线控制动系统;

• EMB系统内没有液压驱动和控制部分,机械连接只是存在于电机到制动钳的驱动部分,由导线传递能量,数据线 传递信号;

• EMB系统的关键部件之一是电子机械 制动器,按其结构特点和工作原理可以分为无自增力制动器和自增力制动 器。

3.混合制动系统

混合制动
•混合线控制动(HBBW)系统的主流布置方式为前轴采用电子液压制动 (EHB)系统、后轴采用电子机械制动(EMB)系统;前轴采用EHB系统可以实现前轮单轮制动力调节,同时靠装于前轴的EHB 实现制动失效备份以满足安全可靠要求;后轴采用EMB系统,一方面可以缩减制动管路的长度,消除压力控制过程中由于管路过长带来的不确定性; 另一方面能够使电子驻车制动系统 (EPB)更加方便快捷。

2.EHB制动系统的工作原理:

**组成:**EHB系统主要包括两个部分:1液压执行机构,这部分主要包括高压蓄能器、液压泵、制动液储油杯、进、出液电磁阀等。
2电子控制单元主要包括传感器信号输入单元、主控单元、执行器驱动单元以及一系列传感器(包括方向盘转角传感器、横摆角速度传感器、压力传感器、制动踏板行程传感器等)。(液压)
在这里插入图片描述
线控制动不依赖于制动踏板与助力机构之间的机械连接,可实现底盘与车身之间的解耦,可以更好地适配L3级别以上的智能驾驶的技术方案。

**工作原理:**驾驶员踩下制动踏板产生位移,数据采集系统将采集到的踏板行程传感器、压力传感器等反馈信号输入到电子控制单元中进行分析和判断,然后对进出液电磁阀分别进行调节。当系统需要增压时,进液阀打开出液阀关闭。当系统需要减压时,进液阀关闭出液阀打开。通过输入PWM控制信号进行高速开关阀从而控制各车轮上的制动压力。通过CAN总线技术ECU还可以接收来自于ABS、ASR、ESP的汽车动态数据,经过分析和处理,将控制信号发送给相应的控制单元,对汽车进行优化。

one-box与two-box的区别

在这里插入图片描述
two-box是取代传统的真空助力器,使用电机驱动液压回路。one-box直接取消液压控制,使ECU直接控制在刹车片上。

“eBooster+ ESC”Two-box方案的系统架构

ESC和eBooster再车上共用一套液压系统,两者协调工作。原理如下:
在这里插入图片描述
eBooster和ESC共用一套制动油壶、制动主缸和制动管路。
eBooster内的助力电机产生驱动力推动主缸活塞运动,使油壶中的制动液流入主缸管路并进入ESC进液阀、经ESC中调压阀和进液阀流入4个轮缸,从而建立起制动力。
当eBooster不工作时,ESC也可以独立控制制动液从主缸流入轮缸,从而建立制动力。
eBooster减压的动态响应速度比ESC主动建压更快,且NVH表现更好,因此eBooster是控制系统中的主执行机构。

two-box的原理

目前主流的Two-Box方案为eBooster+ESC组合,eBooster和ESC分别实现基础制动功能和稳定性功能。ESC和eBooster在车上共用一套液压系统。与传统真空助力器相比,两者协调工作能够精准高效地支持驾驶员或智能驾驶系统的制动请求。

eBooster的作用

eBooster
eBooster最基础的功能是为驾驶员制动提供助力。其原理是利用传感器感知驾驶者踩下制动踏板的力度和速度,并将信号处理之后传给ECU,ECU计算出电机应产生对应的扭矩,再由传动装置将该扭矩转化为助力器阀体的伺服制动力,随即与源踏板动力共同在制动主缸中转化为制动液压力,最终驱动执行元件(卡钳等)实现制动。从而实现电控制动响应速度更快并且更够精准的控制压力。

ESC的作用

电磁阀的作用

这篇关于汽车制动系统基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/617635

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识