1019机器翻译与数据集

2024-01-17 13:40
文章标签 数据 机器翻译 1019

本文主要是介绍1019机器翻译与数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

语言模型是自然语言处理的关键, 而机器翻译是语言模型最成功的基准测试。
因为机器翻译正是将输入序列转换成输出序列的 序列转换模型(sequence transduction)的核心问题。

机器翻译(machine translation)指的是 将序列从一种语言自动翻译成另一种语言。

统计机器翻译(statisticalmachine translation)涉及了 翻译模型和语言模型等组成部分的统计分析
基于神经网络的方法通常被称为 神经机器翻译(neuralmachine translation)
用于将两种翻译模型区分开来。

机器翻译的数据集是由源语言和目标语言的文本序列对组成的,要一种完全不同的方法来预处理机器翻译数据集.

import os
import torch
from d2l import torch as d2l

 下载和预处理数据集
下载一个由Tatoeba项目的双语句子对 组成的“英-法”数据集,数据集中的每一行都是制表符分隔的文本序列对, 序列对由英文文本序列和翻译后的法语文本序列组成。
在这个将英语翻译成法语的机器翻译问题中, 英语是源语言(source language), 法语是目标语言(target language)。

# 下载和预处理数据集
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')def read_data_nmt():"""载入 “英语-法语” 数据集 """data_dir = d2l.download_extract('fra-eng')with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:return f.read()raw_text = read_data_nmt()
print(raw_text[:75])

下载数据集后,原始文本数据需要经过几个预处理步骤。 例如,我们用空格代替不间断空格(non-breaking space), 使用小写字母替换大写字母,并在单词和标点符号之间插入空格。

# 几个预处理步骤
def preprocess_nmt(text):"""预处理 “英语-法语” 数据集"""def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' 'text = text.replace('\u202f', ' ').replace('\xa0',' ').lower()out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else charfor i, char in enumerate(text)]return ''.join(out)text = preprocess_nmt(raw_text)
print(text[:80])

词元化
在机器翻译中,我们更喜欢单词级词元化 (最先进的模型可能使用更高级的词元化技术)。
下面的tokenize_nmt函数对前num_examples个文本序列对进行词元, 其中每个词元要么是一个词,要么是一个标点符号。 此函数返回两个词元列表:source和target:

# 词元化
def tokenize_nmt(text, num_examples=None):"""词元化 “英语-法语” 数据数据集 """source, target = [], []for i, line in enumerate(text.split('\n')):if num_examples and i > num_examples:breakparts = line.split('\t')if len(parts) == 2:source.append(parts[0].split(' ')) # 英语target.append(parts[1].split(' ')) # 法语return source, targetsource, target = tokenize_nmt(text)
source[:6], target[:6]# 绘制每个文本序列所包含的标记数量的直方图,根据句子长度做的直方图
d2l.set_figsize()
_, _, patches = d2l.plt.hist([[len(l)for l in source], [len(l) for l in target]],label = ['source','target'])
for patch in patches[1].patches:patch.set_hatch('/')
d2l.plt.legend(loc='upper right')

词表
由于机器翻译数据集由语言对组成, 因此我们可以分别为源语言和目标语言构建两个词表。
使用单词级词元化时,词表大小将明显大于使用字符级词元化时的词表大小。

# 词汇表
src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>','<bos>','<eos>']) # bos 表示句子开始,eos表示句子结束,min_freq=2表示句子长度小于2个就不要了  
len(src_vocab)

为了缓解这一问题,这里我们将出现次数少于2次的低频率词元 视为相同的未知(“”)词元。
除此之外,我们还指定了额外的特定词元, 例如在小批量时用于将序列填充到相同长度的填充词元(“”), 以及序列的开始词元(“”)和结束词元(“”)。
这些特殊词元在自然语言处理任务中比较常用。

# 序列样本都有一个固定长度截断或填充文本序列
def truncate_pad(line, num_steps, padding_token):"""截断或填充文本序列"""if len(line) > num_steps:return line[:num_steps]return line + [padding_token] * (num_steps - len(line))truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])

加载数据集
在机器翻译中,每个样本都是由源和目标组成的文本序列对, 其中的每个文本序列可能具有不同的长度。

为了提高计算效率,我们仍然可以通过截断(truncation)和 填充(padding)方式实现一次只处理一个小批量的文本序列。
假设同一个小批量中的每个序列都应该具有相同的长度num_steps, 那么如果文本序列的词元数目少于num_steps时, 我们将继续在其末尾添加特定的“”词元, 直到其长度达到num_steps; 反之,我们将截断文本序列时,只取其前num_steps 个词元, 并且丢弃剩余的词元。
这样,每个文本序列将具有相同的长度, 以便以相同形状的小批量进行加载

如前所述,下面的truncate_pad函数将截断或填充文本序列。

# 转换成小批量数据集用于训练
def build_array_nmt(lines, vocab, num_steps):"""将机器翻译的文本序列转换成小批量"""lines = [vocab[l] for l in lines]lines = [l + [vocab['<eos>']] for l in lines] # 每个句子后面加了一个截止符array = torch.tensor([ truncate_pad(l, num_steps, vocab['<pad>']) for l in lines ])valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)return array, valid_len # valid_len 为原始句子的实际长度

现在我们定义一个函数,可以将文本序列 转换成小批量数据集用于训练。
我们将特定的“”词元添加到所有序列的末尾, 用于表示序列的结束。
当模型通过一个词元接一个词元地生成序列进行预测时, 生成的“”词元说明完成了序列输出工作。
此外,我们还记录了每个文本序列的长度, 统计长度时排除了填充词元, 在稍后将要介绍的一些模型会需要这个长度信息

# 训练模型
def load_data_nmt(batch_size, num_steps, num_examples=600):"""返回翻译数据集的迭代器和词汇表"""text = preprocess_nmt(read_data_nmt())source, target = tokenize_nmt(text, num_examples)src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>','<bos>','<eos>'])tgt_vocab = d2l.Vocab(target, min_freq=2,reserved_tokens=['<pad>','<bos>','<eos>'])src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)  tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)data_iter = d2l.load_array(data_arrays, batch_size)return data_iter, src_vocab, tgt_vocab

训练模型
最后,我们定义load_data_nmt函数来返回数据迭代器, 以及源语言和目标语言的两种词表。

# 读出 “英语-法语” 数据集中第一个小批量数据
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)  
for X, X_valid_len, Y, Y_valid_len in train_iter:print('X:', X.type(torch.int32))print('valid lengths for X:', X_valid_len)print('Y:', Y.type(torch.int32))print('valid lengths for Y:', Y_valid_len)break


 小结
机器翻译指的是将文本序列从一种语言自动翻译成另一种语言。

使用单词级词元化时的词表大小,将明显大于使用字符级词元化时的词表大小。

为了缓解这一问题,我们可以将低频词元视为相同的未知词元。

通过截断和填充文本序列,可以保证所有的文本序列都具有相同的长度,以便以小批量的方式加载。

 

这篇关于1019机器翻译与数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616231

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒