基于HFSS的微带线特性阻抗仿真-与基于FDTD的计算电磁学方法对比(Matlab)

本文主要是介绍基于HFSS的微带线特性阻抗仿真-与基于FDTD的计算电磁学方法对比(Matlab),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于HFSS的微带线特性阻抗仿真-与基于FDTD的计算电磁学方法对比(Matlab)

工程下载:
HFSS的微带线特性阻抗仿真工程文件(注意版本:HFSS2023R2):
https://download.csdn.net/download/weixin_44584198/88748285
基于FDTD的微带线特性阻抗仿真Matlab工程:
https://download.csdn.net/download/weixin_44584198/88748215

目录

    • 基于HFSS的微带线特性阻抗仿真-与基于FDTD的计算电磁学方法对比(Matlab)
    • 1、微带线特性阻抗仿真基础
    • 2、使用HFSS确定微带线特性阻抗
        • 2.1、创建基板
        • 2.2、背面覆铜
        • 2.3、信号线覆铜
        • 2.4、设置空气盒子
        • 2.5、设置波端口
        • 2.6、设置分析
        • 2.7、check和运行
    • 3、使用FDTD确定微带线特性阻抗
        • 3.1 基本思路
        • 3.2 建模
        • 3.3 网格剖分
        • 3.4 结果
        • 3.5 代码运行的tips

1、微带线特性阻抗仿真基础

微带线特性阻抗的仿真是电磁学里面一个比较基本的仿真了,很多学校都会把这个当成HFSS学习的作业来弄。当然,微带线阻抗的仿真和实际的测量是有一定差别的,在仿真时候我们可以用波端口或者使用CPML边界截断,而实际测量的话手段是非常有限的。感兴趣可以阅读:
利用矢网测试PCB走线的特性阻抗
第二章 微带线阻抗实验
这种基于四分之一阻抗线的实际测量方法只能大概测一下,因为不同频率下的特性阻抗实际都是不一致的,要不然SMA接口还分0-6Ghz、0-10GHz那么多类型干嘛。

当然,有些刚刚入门的小伙伴会问了,特性阻抗不是可以使用公式进行计算的嘛,确实是这样的,但是这种是基于大量近似的计算,其精度必然没有电磁学方法准确。那么我们来给出今天的一个简单的案例:
基板:Rogers5880(相对介电常数2.2,损耗角正切0.0009)
结构:背板覆铜,正面信号线(微带线)
参数:铜厚35um,微带线宽为1mm,板子高度为1mm
目标:计算1-10GHz的该微带线特性阻抗

事实上,使用上面的这些参数,我们已经可以使用市面上常见的特性阻抗计算工具对特性阻抗进行计算了,比如ADS自带的计算工具linecalc:
在这里插入图片描述
计算出来的结果也非常明确,该结构在1GHz的特性阻抗为92.7欧姆。之前也提到,微带线特性阻抗对于不同频率是变化的,在10GHz处,计算出来的特性阻抗为93.6欧姆。使用linecalc工具得到的结果如下表,其基本的趋势是频率越高特性阻抗越大:

频率特性阻抗
1GHz92.736200
2GHz92.741900
3GHz92.758900
4GHz92.796500
5GHz92.859500
6GHz92.950900
7GHz93.073200
8GHz93.228200
9GHz93.417100
10GHz93.640700

2、使用HFSS确定微带线特性阻抗

2.1、创建基板

首先创建基板,基板材料直接选5880就行,这个材料的相对介电常数2.2,损耗角正切0.0009,设置基板的高h=1,宽度一般为线宽的11倍左右,此处微带线线宽是1mm,因此板材的宽被设置为12mm,长度随意设置,美观就行,此处长设置为32mm:
在这里插入图片描述
在这里插入图片描述

2.2、背面覆铜

然后就是设置铜皮的位置了,此处我们底部是全部覆铜的,厚度为35um:
在这里插入图片描述
在这里插入图片描述

2.3、信号线覆铜

我们的顶部是信号线,也就是宽度为1mm的微带线:
在这里插入图片描述
在这里插入图片描述

2.4、设置空气盒子

下一步就是设置空气盒子了,一般要原理自己设置的结构的四分之一波长,根据上面的要求,我们要计算1-10GHz的该微带线特性阻抗,那么使用的最高频率所对应的波长为30mm,也就是空气盒子需要大于7.5mm,此处设置为8mm即可:
在这里插入图片描述
在这里插入图片描述
观察上面的图片,还有地方需要改一下,因为我们使用的是波端口,所以空气盒子要紧贴两个端口位置,改为:
在这里插入图片描述
在这里插入图片描述

2.5、设置波端口

下面需要设置波端口,波端口是一个面,其与微带线基板紧贴,但是要比基板结构高一点,比信号线铜皮宽一点(波端口要尽量大,因为要包含整个辐射面):
在这里插入图片描述
在此给出一种推荐的设置(高度为基板的6倍,宽度为微带线的6倍):
在这里插入图片描述
当然,还要选中刚刚创建的面,添加激励为Modal的WaveportModal:用于计算无源高频结构的S参数,如微带、波导和由源驱动的传输线,并用于计算入射平面波散射。S矩阵解将用波导模的入射功率和反射功率来表示。Terminal:用于计算单或多导体传输线端口的无源、高频结构的基于终端的S参数,这些S参数是由源驱动的。这种解决方案类型是基于终端的电压和电流描述):
在这里插入图片描述

此外,如果在之后的仿真中出现这样的信息,我们需要将其适当缩小,因为面太大了引入了其他的传播模式,这在此处的实验中是不恰当的:
在这里插入图片描述

2.6、设置分析

设置求解器和扫频范围:
在这里插入图片描述
在这里插入图片描述

2.7、check和运行

check一下,发现没有问题:
在这里插入图片描述
在结果中查看特性阻抗Z0,频率越高阻抗越低,好像和之前LineCalc算出来的相反有没有(算出来的大概范围是94-95欧姆的样子):
在这里插入图片描述

3、使用FDTD确定微带线特性阻抗

3.1 基本思路

FDTD没有HFSS的波端口可以直接用来确定特性阻抗Z0,此处使用S参数作为中间量求取特性阻抗。在终端完美匹配时,输入回波损耗S11和传输线特性阻抗具有如下关系:
Z 0 = Z t e r m 1 + S 11 1 − S 11 Z0 = {Z_{term}}\frac{{1 + {S_{11}}}}{{1 - {S_{11}}}} Z0=Zterm1S111+S11
其中Z0是要求的微带线的阻抗, Z t e r m Z_{term} Zterm是端口1的阻抗。为达到终端完美匹配的条件,在实际仿真过程中将板材后半部分用CPML截断

3.2 建模

实际上,电路板的三个边都被CPML截断,来实现无限大的电路板结构:
在这里插入图片描述
背面全部覆铜:
在这里插入图片描述

3.3 网格剖分
close all; clc;
addpath(genpath('K:\Project_WXP\20240115_FDTD\FDTD_Z0'))
% initialize the matlab workspace
%参数赋值,定义分辨率单位m
wxp_dx = 1.00e-4; 
wxp_dy = 1.00e-4;
wxp_dz = 0.25e-4;%定义板材和微带大小参数,单位mm
wxp_cond_width      = 1;
wxp_cond_T          = 0.00;
wxp_cond_bottom_T   = 0.00;
wxp_sub_width       = 12;
wxp_sub_length      = 11;
wxp_sub_height      = 1;
wxp_sub_eps_r       = 2.2;
wxp_sub_eps_i       = 0.0009;
wxp_sample_position = 0.25;
fdtd_solve;
3.4 结果

在结果中查看特性阻抗Z0,频率越高阻抗越高,算出来的结果也和LineCalc中比较接近,很难说哪个比较准确
在这里插入图片描述

3.5 代码运行的tips

主函数在FDTD_Z0\main里面的wxp_main.m
第一次运行修改addpath(genpath(‘K:\Project_WXP\20240115_FDTD\FDTD_Z0’))为实际电脑上的路径

这篇关于基于HFSS的微带线特性阻抗仿真-与基于FDTD的计算电磁学方法对比(Matlab)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615812

相关文章

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复