【小笔记】用tsai库实现Rocket家族算法

2024-01-17 08:44

本文主要是介绍【小笔记】用tsai库实现Rocket家族算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024.1.16
Rocket家族算法是用于时间序列分类的强baseline(性能比较参考【小笔记】时序数据分类算法最新小结),Rocket/MiniRocket/MultiRocket官方都有开源实现,相比较而言,用tsai来实现有三个好处:1是快速跑通模型;2是更简洁优雅;3是掌握一个框架能举一反三。
在这里插入图片描述

1.tsai简介

项目:https://github.com/timeseriesAI/tsai
在这里插入图片描述

简介:
用于处理时间序列的工具库,包含TCN、Rockert等众多时间序列处理算法
请添加图片描述
安装:

pip install tsai

2.Rocket:最优雅的实现

这个例子是基于UCR的Beef数据集,运行时,会自动下载数据集到项目的data路径下

from tsai.all import *
from sklearn.linear_model import RidgeClassifierCV
from dsets_build import get_my_dsetsdevice = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)# 加载UCR数据集
X, y, splits = get_UCR_data('Beef', return_split=False, on_disk=True, verbose=True)
tfms  = [None, [Categorize()]]
batch_tfms = [TSStandardize(by_sample=True)]
dsets = TSDatasets(X, y, tfms=tfms, splits=splits)# 标准示例
dls = TSDataLoaders.from_dsets(dsets.train, dsets.valid, bs=768, drop_last=False, shuffle_train=False,device=device,batch_tfms=[TSStandardize(by_sample=True)])
model = create_model(ROCKET, dls=dls)
# model = model.to(device)print("构造特征...")
X_train, y_train = create_rocket_features(dls.train, model, verbose=False)
X_valid, y_valid = create_rocket_features(dls.valid, model, verbose=False)
print(X_train.shape, X_valid.shape)print("基于特征开始训练...")
ridge = RidgeClassifierCV(alphas=np.logspace(-8, 8, 17))
ridge.fit(X_train, y_train)
print(f'alpha: {ridge.alpha_:.2E}  train: {ridge.score(X_train, y_train):.5f}  valid: {ridge.score(X_valid, y_valid):.5f}')

3.MiniRocket:(比Rocket更快)

待补充

4.MultiRocket:(比MiniRocket更强)

待补充

5.Hydra-MultiRocket:(Rocket家最强王者)

待补充

6.用自己的数据集训练模型

上面的例子都是用的UCR数据集,若要用自己的数据集进行训练怎么解决?
官方教程:
tsai-main\tutorial_nbs路径下的00c_Time_Series_data_preparation.ipynb
在这里插入图片描述
我总结了一下,基于单变量时间序列构建数据集就是下面这样:
dsets_build.py

from tsai.all import *
import numpy as np
import pandas as pddef get_my_dsets():# 导入数据集train_data, valid_data, test_data = [[], []], [[], []], [[], []]radio_train, radio_valid, radio_test = 0.6, 0.2, 0.2# !这是我的读取读取例子,读者需要进行替换----------------------------------path = "train.csc"data = pd.read_csv(path)	train_data[0] = data['x'].tolist()train_data[1] = data['y'].tolist()# -----------------------------------------------------------------------# 将数据转换为np.array即可,剩下的都是通用了X_2d, y = np.array(train_data[0]), np.array(train_data[1])print(X_2d.shape, y.shape)    # (4000, 4096) (4000,)splits = get_splits(y, valid_size=0.2, stratify=True, random_state=23, shuffle=True, show_plot=False)print(splits)tfms = [None, [Categorize()]]dsets = TSDatasets(X_2d, y, tfms=tfms, splits=splits, inplace=True)print(dsets)return dsets

将数据集转换为tsai的dsets后,就可以直接用于训练模型了。

from tsai.all import *
from sklearn.linear_model import RidgeClassifierCV
from dsets_build import get_my_dsetsdevice = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)# 加载UCR数据集
# X, y, splits = get_UCR_data('Beef', return_split=False, on_disk=True, verbose=True)
# tfms  = [None, [Categorize()]]
# batch_tfms = [TSStandardize(by_sample=True)]
# dsets = TSDatasets(X, y, tfms=tfms, splits=splits)# 加载自定义的数据集
dsets = get_my_dsets()         # 和Rockert例子只有这里的区别# 标准示例
dls = TSDataLoaders.from_dsets(dsets.train, dsets.valid, bs=768, drop_last=False, shuffle_train=False,device=device,batch_tfms=[TSStandardize(by_sample=True)])
model = create_model(ROCKET, dls=dls)
# model = model.to(device)print("构造rocket特征...")
X_train, y_train = create_rocket_features(dls.train, model, verbose=False)
X_valid, y_valid = create_rocket_features(dls.valid, model, verbose=False)
print(X_train.shape, X_valid.shape)print("基于特征开始训练...")
ridge = RidgeClassifierCV(alphas=np.logspace(-8, 8, 17))
ridge.fit(X_train, y_train)
print(f'alpha: {ridge.alpha_:.2E}  train: {ridge.score(X_train, y_train):.5f}  valid: {ridge.score(X_valid, y_valid):.5f}')

这篇关于【小笔记】用tsai库实现Rocket家族算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615478

相关文章

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

Golang中map缩容的实现

《Golang中map缩容的实现》本文主要介绍了Go语言中map的扩缩容机制,包括grow和hashGrow方法的处理,具有一定的参考价值,感兴趣的可以了解一下... 目录基本分析带来的隐患为什么不支持缩容基本分析在 Go 底层源码 src/runtime/map.go 中,扩缩容的处理方法是 grow

Go 1.23中Timer无buffer的实现方式详解

《Go1.23中Timer无buffer的实现方式详解》在Go1.23中,Timer的实现通常是通过time包提供的time.Timer类型来实现的,本文主要介绍了Go1.23中Timer无buff... 目录Timer 的基本实现无缓冲区的实现自定义无缓冲 Timer 实现更复杂的 Timer 实现总结在

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Qt实现发送HTTP请求的示例详解

《Qt实现发送HTTP请求的示例详解》这篇文章主要为大家详细介绍了如何通过Qt实现发送HTTP请求,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、添加network模块2、包含改头文件3、创建网络访问管理器4、创建接口5、创建网络请求对象6、创建一个回复对

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

grom设置全局日志实现执行并打印sql语句

《grom设置全局日志实现执行并打印sql语句》本文主要介绍了grom设置全局日志实现执行并打印sql语句,包括设置日志级别、实现自定义Logger接口以及如何使用GORM的默认logger,通过这些... 目录gorm中的自定义日志gorm中日志的其他操作日志级别Debug自定义 Loggergorm中的

Spring Boot整合消息队列RabbitMQ的实现示例

《SpringBoot整合消息队列RabbitMQ的实现示例》本文主要介绍了SpringBoot整合消息队列RabbitMQ的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装Spring