【小笔记】用tsai库实现Rocket家族算法

2024-01-17 08:44

本文主要是介绍【小笔记】用tsai库实现Rocket家族算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024.1.16
Rocket家族算法是用于时间序列分类的强baseline(性能比较参考【小笔记】时序数据分类算法最新小结),Rocket/MiniRocket/MultiRocket官方都有开源实现,相比较而言,用tsai来实现有三个好处:1是快速跑通模型;2是更简洁优雅;3是掌握一个框架能举一反三。
在这里插入图片描述

1.tsai简介

项目:https://github.com/timeseriesAI/tsai
在这里插入图片描述

简介:
用于处理时间序列的工具库,包含TCN、Rockert等众多时间序列处理算法
请添加图片描述
安装:

pip install tsai

2.Rocket:最优雅的实现

这个例子是基于UCR的Beef数据集,运行时,会自动下载数据集到项目的data路径下

from tsai.all import *
from sklearn.linear_model import RidgeClassifierCV
from dsets_build import get_my_dsetsdevice = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)# 加载UCR数据集
X, y, splits = get_UCR_data('Beef', return_split=False, on_disk=True, verbose=True)
tfms  = [None, [Categorize()]]
batch_tfms = [TSStandardize(by_sample=True)]
dsets = TSDatasets(X, y, tfms=tfms, splits=splits)# 标准示例
dls = TSDataLoaders.from_dsets(dsets.train, dsets.valid, bs=768, drop_last=False, shuffle_train=False,device=device,batch_tfms=[TSStandardize(by_sample=True)])
model = create_model(ROCKET, dls=dls)
# model = model.to(device)print("构造特征...")
X_train, y_train = create_rocket_features(dls.train, model, verbose=False)
X_valid, y_valid = create_rocket_features(dls.valid, model, verbose=False)
print(X_train.shape, X_valid.shape)print("基于特征开始训练...")
ridge = RidgeClassifierCV(alphas=np.logspace(-8, 8, 17))
ridge.fit(X_train, y_train)
print(f'alpha: {ridge.alpha_:.2E}  train: {ridge.score(X_train, y_train):.5f}  valid: {ridge.score(X_valid, y_valid):.5f}')

3.MiniRocket:(比Rocket更快)

待补充

4.MultiRocket:(比MiniRocket更强)

待补充

5.Hydra-MultiRocket:(Rocket家最强王者)

待补充

6.用自己的数据集训练模型

上面的例子都是用的UCR数据集,若要用自己的数据集进行训练怎么解决?
官方教程:
tsai-main\tutorial_nbs路径下的00c_Time_Series_data_preparation.ipynb
在这里插入图片描述
我总结了一下,基于单变量时间序列构建数据集就是下面这样:
dsets_build.py

from tsai.all import *
import numpy as np
import pandas as pddef get_my_dsets():# 导入数据集train_data, valid_data, test_data = [[], []], [[], []], [[], []]radio_train, radio_valid, radio_test = 0.6, 0.2, 0.2# !这是我的读取读取例子,读者需要进行替换----------------------------------path = "train.csc"data = pd.read_csv(path)	train_data[0] = data['x'].tolist()train_data[1] = data['y'].tolist()# -----------------------------------------------------------------------# 将数据转换为np.array即可,剩下的都是通用了X_2d, y = np.array(train_data[0]), np.array(train_data[1])print(X_2d.shape, y.shape)    # (4000, 4096) (4000,)splits = get_splits(y, valid_size=0.2, stratify=True, random_state=23, shuffle=True, show_plot=False)print(splits)tfms = [None, [Categorize()]]dsets = TSDatasets(X_2d, y, tfms=tfms, splits=splits, inplace=True)print(dsets)return dsets

将数据集转换为tsai的dsets后,就可以直接用于训练模型了。

from tsai.all import *
from sklearn.linear_model import RidgeClassifierCV
from dsets_build import get_my_dsetsdevice = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)# 加载UCR数据集
# X, y, splits = get_UCR_data('Beef', return_split=False, on_disk=True, verbose=True)
# tfms  = [None, [Categorize()]]
# batch_tfms = [TSStandardize(by_sample=True)]
# dsets = TSDatasets(X, y, tfms=tfms, splits=splits)# 加载自定义的数据集
dsets = get_my_dsets()         # 和Rockert例子只有这里的区别# 标准示例
dls = TSDataLoaders.from_dsets(dsets.train, dsets.valid, bs=768, drop_last=False, shuffle_train=False,device=device,batch_tfms=[TSStandardize(by_sample=True)])
model = create_model(ROCKET, dls=dls)
# model = model.to(device)print("构造rocket特征...")
X_train, y_train = create_rocket_features(dls.train, model, verbose=False)
X_valid, y_valid = create_rocket_features(dls.valid, model, verbose=False)
print(X_train.shape, X_valid.shape)print("基于特征开始训练...")
ridge = RidgeClassifierCV(alphas=np.logspace(-8, 8, 17))
ridge.fit(X_train, y_train)
print(f'alpha: {ridge.alpha_:.2E}  train: {ridge.score(X_train, y_train):.5f}  valid: {ridge.score(X_valid, y_valid):.5f}')

这篇关于【小笔记】用tsai库实现Rocket家族算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615478

相关文章

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具