基于Python的指数基金量化投资——指数基金间相关度计算

2024-01-17 00:08

本文主要是介绍基于Python的指数基金量化投资——指数基金间相关度计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

每一种指数基金都是由一篮子股票组成的,少的有几十个成分股,多的有几百上千个成分股,而整个A股目前有四千多家上市公司,每种指数基金都从A股这个大篮子里面选取成分股,那就会有个问题,不同的指数基金选择的成分股会有重叠,重叠度是多少,这是一个很重要的指标。

从投资的角度来看,一定程度的分散覆盖度更好,同时抗非系统风险能力也会更强,但如果太分散也不好,过度分散和买下整个A股没有什么区别,投资收益也会变低。

举个例子,如果指数A包含100个成分股,指数B也包含100个成分股,但他们有50个成分股是相同的,不考虑权重影响的情况下,他们的相似度就是50%,意味着如果你买入1份指数A的话,相当于间接买入了0.5份的指数B。

在我们的实际投资过程中,不可能只投资一只指数基金,所以肯定会存在相关度的问题,在选择投资品种的时候要通过相关度选择相关性低的指数基金形成组合来进行投资。

那怎么获得指数基金间的相关度数据呢,可以简单考虑个股的重合度来进行考量,通过下面的简单公式进行计算:

(Cnt/LenA + Cnt/LenB)/ 2

Cnt表示A指数和B指数的重叠成分股数量
LenA表示A指数成分股数量
LenB表示B指数成分股数量

通过这个计算公式可以获得下面的矩阵相关图,横坐标和纵坐标对应相应的指数基金品种,图中的数据表示横纵坐标指数对应的相关度数据。

在这里插入图片描述

例如,沪深300和300医药的相关度为0.55,沪深300和全指医药的相关度为0.11,沪深300和医药100的相关度为0.19,沪深300和中证500的相关度为0,创业板指和医药100的相关度为0.22。

对角线由于指数基金是一致的,也就是自己和自己相关,所以对应的数据全是1。

从上面的矩阵图中能很清晰的看出各个指数基金的相关度,选择相关度低的进行投资,如果数据为0是最好的,例如沪深300加中证500进行组合,中证白酒+中证医药进行组合;避免相关度高的进行投资,例如基本面50+中证100进行组合、中证红利+红利指数进行组合。

源码

#源码中用到的indexType文件下的指数数据.csv请参看《基于Python的指数基金量化投资——指数包含的个股数据获取》

import pandas as pd
import os
import numpy as np
import matplotlib.pyplot as plt
import seaborn as snsnum_file = os.listdir('./importfile/indexSeries/indexTpye/')
name_file = list()relation_matrix = np.zeros((len(num_file), len(num_file)))
col = 0
row = 0
for index_a_name in os.listdir('./importfile/indexSeries/indexTpye/'):label_name = pd.read_csv('./importfile/indexSeries/indexTpye/' + index_a_name)name_file.append(label_name.values[1][2])for index_b_name in os.listdir('./importfile/indexSeries/indexTpye/')

这篇关于基于Python的指数基金量化投资——指数基金间相关度计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/614360

相关文章

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及