habitat challenge rearrangement代码复现细节及踩坑实录

2024-01-16 23:44

本文主要是介绍habitat challenge rearrangement代码复现细节及踩坑实录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

具身智能移动操作

Habitat-Challenge是2022年Meta发起的具身智能挑战赛之一,主要是重拍任务。具体细节可以参见以下两篇论文:
1、Habitat 2.0: Training Home Assistants to Rearrange their Habitat,这篇论文中提出了任务细节,以及对应的Baseline方法MonolithicRL和TP-SRL,其中MonolithicRL是采用端到端RL的方法,TP-SRL是采用分层的方法,上层任务规划下层子技能;
对应github官网
2、Multi-skill mobile manipulation for object rearrangement,这篇论文是目前成功率最高的方法,后续简称M3;
对应gibhub官网
具身智能
具体实现细节参照论文后续只描述代码复现过程中遇到的一些坑,可能可以帮助后续学者节省时间。

环境安装:

1.安装habitat-sim:

如果直接采用官网给的conda install habitat-sim withbullet -c conda-forge -c aihabitat命令,很有可能由于网络问题导致配置失败。
有两种替代的安装方式:
方式一:直接去Habitat-sim Conda官网下载对应的包。
下载对应的安装包
方式二:可以直接下载对应的Habitat-sim包,采用如下命令安装:

cd habitat-sim
pip install -r requirements.txt
python setup.py install --bullet --headless 
cd ..

选择Habitat-sim时需要注意一是要与Habitat的版本相匹配。一般要选择withbullet版本,而headless参数取决于是否需要显示,如没有显示器可以安装headless的版本。最好根据github界面中对应的readme指示来,如withbullet和headless就要下载conda对应的版本。
安装细节

2.安装Habitat-lab

这里需要特别注意的是因为habitat-lab不是一个库,所以一个conda环境可能就对应了一个habitat-lab环境。直接在安装包里下载即可。

git clone --branch stable https://github.com/facebookresearch/habitat-lab.git
cd habitat-lab
pip install -e habitat-lab  # install habitat_lab
或者
python -m pip install -e .

3.安装成功结果:

可以看到二者对应的版本其实是不一样的,
我这里hab-mm对应的是M3的conda环境,对应的habitat和habitat-sim版本都是0.2.1;
而在habitat对应的是habitat-challenge官方环境,对应的habitat和habitat-sim版本都是0.2.2;
habitat仿真器对于环境要求较为严格,因此如果不对应可能会出现意向不到的错误。
安装成功结果

habitat-challenge仿真踩坑

安装环境后可能出现的问题:

安装环境时可能出现的小问题:
OSError: /home/lu/.conda/envs/habitat/lib/python3.7/site-packages/nvidia/cublas/lib/libcublas.so.11: undefined symbol: cublasLtHSHMatmulAlgoInit, version libcublasLt.so.11
需要在~/.bashrc文件里加上一句:

export LD_LIBRARY_PATH=/home/lu/.conda/envs/habitat/lib/python3.7/site-packages/nvidia/cublas/lib/:$LD_LIBRARY_PATH

命令一:执行MonolithicRL时:

执行命令:

#/bin/bashexport MAGNUM_LOG=quiet
export HABITAT_SIM_LOG=quietset -x
python habitat-lab/habitat_baselines/run.py \--exp-config configs/methods/ddppo_monolithic.yaml \--run-type train \BASE_TASK_CONFIG_PATH configs/tasks/rearrange.local.rgbd.yaml \TASK_CONFIG.DATASET.SPLIT 'train' \TASK_CONFIG.TASK.TASK_SPEC_BASE_PATH configs/pddl/ \TENSORBOARD_DIR tb \CHECKPOINT_FOLDER checkpoints \LOG_FILE train.log

问题一:提示Not a gzipped file:

报错
检查路径是否有问题:
因为对应了pointnav_dataset.py函数中,

datasetfile_path = config.DATA_PATH.format(split=config.SPLIT)
with gzip.open(datasetfile_path, "rt") as f:self.from_json(f.read(), scenes_dir=config.SCENES_DIR)

问题二:在训练过程中总报错EOFError:

Traceback (most recent call last):File "habitat-lab/habitat_baselines/run.py", line 81, in <module>main()File "habitat-lab/habitat_baselines/run.py", line 40, in mainrun_exp(**vars(args))File "habitat-lab/habitat_baselines/run.py", line 77, in run_expexecute_exp(config, run_type)File "habitat-lab/habitat_baselines/run.py", line 60, in execute_exptrainer.train()File "/home/lu/.conda/envs/habitat/lib/python3.7/contextlib.py", line 74, in innerreturn func(*args, **kwds)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat_baselines/rl/ppo/ppo_trainer.py", line 715, in trainself._init_train()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat_baselines/rl/ppo/ppo_trainer.py", line 254, in _init_trainself._init_envs()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat_baselines/rl/ppo/ppo_trainer.py", line 204, in _init_envsworkers_ignore_signals=is_slurm_batch_job(),File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat_baselines/common/construct_vector_env.py", line 97, in construct_envsworkers_ignore_signals=workers_ignore_signals,File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 200, in __init__read_fn() for read_fn in self._connection_read_fnsFile "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 200, in <listcomp>read_fn() for read_fn in self._connection_read_fnsFile "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 103, in __call__res = self.read_fn()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/utils/pickle5_multiprocessing.py", line 68, in recvbuf = self.recv_bytes()File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 216, in recv_bytesbuf = self._recv_bytes(maxlength)File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytesbuf = self._recv(4)File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 379, in _recvchunk = read(handle, remaining)
ConnectionResetError: [Errno 104] Connection reset by peer
Exception ignored in: <function VectorEnv.__del__ at 0x7fafedb180e0>
Traceback (most recent call last):File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 584, in __del__self.close()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 452, in closeread_fn()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 103, in __call__res = self.read_fn()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/utils/pickle5_multiprocessing.py", line 68, in recvbuf = self.recv_bytes()File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 216, in recv_bytesbuf = self._recv_bytes(maxlength)File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytesbuf = self._recv(4)File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 383, in _recvraise EOFError
EOFError:

在Github上读到:
gpu问题
可能是由于GPU训练不了,可以修改:
habitat-challenge/habitat-lab/habitat_baselines/common/construct_vector_env.py文件
分析中的74行可以看到这里做了一个判断:

    if int(os.environ.get("HABITAT_ENV_DEBUG", 0)):logger.warn("Using the debug Vector environment interface. Expect slower performance.")vector_env_cls = ThreadedVectorEnvelse:vector_env_cls = VectorEnvenvs = vector_env_cls(make_env_fn=make_gym_from_config,env_fn_args=tuple((c,) for c in configs),workers_ignore_signals=workers_ignore_signals,)

因为VectorEnv不是所有gpu都带得动,直接把vector_env_cls强行指定为ThreadedVectorEnv就好。

envs = ThreadedVectorEnv(make_env_fn=make_gym_from_config,env_fn_args=tuple((c,) for c in configs),workers_ignore_signals=workers_ignore_signals,)

具体原因可以看官网给出的解释:

Debugging an environment issue

Our vectorized environments are very fast, but they are not very verbose. When using VectorEnv some errors may be silenced, resulting in process hanging or multiprocessing errors that are hard to interpret. We recommend setting the environment variable HABITAT_ENV_DEBUG to 1 when debugging (export HABITAT_ENV_DEBUG=1) as this will use the slower, but more verbose ThreadedVectorEnv class. Do not forget to reset HABITAT_ENV_DEBUG (unset HABITAT_ENV_DEBUG) when you are done debugging since VectorEnv is much faster than ThreadedVectorEnv.
且可以看habitat.core.vector_env:
仿真环境区别

命令二:分层强化学习代码(TP-SRL):

问题一:无法找到路径

执行命令该命令需要在habitat-lab文件夹下执行,否则需要修改对应的.yaml文件:

python habitat_baselines/run.py \--exp-config habitat-lab/habitat_baselines/config/rearrange/ddppo_open_cab.yaml \--run-type train \TENSORBOARD_DIR ../pick_tb/ \CHECKPOINT_FOLDER ../pick_checkpoints/ \LOG_FILE ../pick_train.log

因为它给的config都是相对路径
比如上面我要运行habitat-lab/habitat_baselines/config/rearrange/ddppo_open_cab.yaml文件我就需要修改BASE_TASK_CONFIG_PATH部分,将其修改为从habitat-challenge下运行的路径。其他yaml文件同理。
相对路径
如果直接在habitat-lab文件下执行也需要注意,需要创建一个执行数据的软链接,因为它会直接在该目录下找数据:

ln -s ../data data

问题二:AssertionError: Object attributes not uniquely matched to shortened handle.

这个问题是由于objects/ycb的版本导致的:

Traceback (most recent call last):File "habitat_baselines/run.py", line 81, in <module>
Process ForkServerProcess-26:
Traceback (most recent call last):File "/home/lu/.conda/envs/hab-mm/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrapself.run()File "/home/lu/.conda/envs/hab-mm/lib/python3.7/multiprocessing/process.py", line 99, in runself._target(*self._args, **self._kwargs)File "/home/lu/.conda/envs/hab-mm/lib/python3.7/contextlib.py", line 74, in innerreturn func(*args, **kwds)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 262, in _worker_envobservations = env.reset()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/gym_env_episode_count_wrapper.py", line 50, in resetreturn self.env.reset(**kwargs)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/gym_env_obs_dict_wrapper.py", line 32, in resetreturn self.env.reset(**kwargs)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/utils/gym_adapter.py", line 287, in resetobs = self._env.reset()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/environments.py", line 47, in resetobservations = super().reset()File "/home/lu/.conda/envs/hab-mm/lib/python3.7/contextlib.py", line 74, in innerreturn func(*args, **kwds)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 402, in resetreturn self._env.reset()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 250, in resetself.reconfigure(self._config)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 336, in reconfigureself._sim.reconfigure(self._config.SIMULATOR)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/tasks/rearrange/rearrange_sim.py", line 223, in reconfigureself._add_objs(ep_info, should_add_objects)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/tasks/rearrange/rearrange_sim.py", line 409, in _add_objs), f"Object attributes not uniquely matched to shortened handle. '{obj_handle}' matched to {matching_templates}. TODO: relative paths as handles should fix some duplicates. For now, try renaming objects to avoid collision."
AssertionError: Object attributes not uniquely matched to shortened handle. '005_tomato_soup_can.object_config.json' matched to {}. TODO: relative paths as handles should fix some duplicates. For now, try renaming objects to avoid collision.

在pick.yaml文件中:

ADDITIONAL_OBJECT_PATHS:
- "data/objects/ycb/configs/"

而存在两个ycb,ycb_1.1和ycb_1.2,其中ycb_1.1中没有configs的文件夹,在ycb_1.2中有。可以看到在data/versioned_data文件夹下有两个版本的ycb:
ycb
因此解决这个错误只需要链接正确的ycb到objects目录下:

cd objects
ln -s ../versioned_data/ycb_1.2 ycb

问题三:

这就是纯粹gpu带不起:

torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB (GPU 0; 7.77 GiB total capacity; 5.21 GiB already allocated; 191.38 MiB free; 5.22 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

可以试一试修改参数:
可以修改habitat_baselines/config/rearrange/ddppo_pick.yaml中的NUM_ENVIRONMENTS参数,原本是32改成了16可能可以训练。

M3仿真踩坑

M3中相对问题较少,基本上安装就能使用。

问题一:EOF问题

这个问题和Habitat-challenge中出现问题的原因如出一辙,几乎一样。只是在代码中需要修改的位置不一样。
需要修改mobile_manipulation/utils//env_utils.py中的文件:
直接把它原本的代码注释,换成vec_env_cls = ThreadedVectorEnv,强制指定环境为ThreadedVectorEnv即可。

#vec_env_cls = ThreadedVectorEnv if debug else VectorEnvvec_env_cls = ThreadedVectorEnvenvs = vec_env_cls(make_env_fn=make_env_fn,env_fn_args=tuple(zip(configs, env_classes, [wrappers] * num_envs)),workers_ignore_signals=workers_ignore_signals,auto_reset_done=auto_reset_done,)

问题二:ycb的问题

Exception in thread Thread-26:
Traceback (most recent call last):File "/home/lu/.conda/envs/hab-mm/lib/python3.7/threading.py", line 926, in _bootstrap_innerself.run()File "/home/lu/.conda/envs/hab-mm/lib/python3.7/threading.py", line 870, in runself._target(*self._args, **self._kwargs)File "/home/lu/.conda/envs/hab-mm/lib/python3.7/contextlib.py", line 74, in innerreturn func(*args, **kwds)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 262, in _worker_envobservations = env.reset()File "/home/lu/.conda/envs/hab-mm/lib/python3.7/site-packages/gym/core.py", line 337, in resetreturn self.env.reset(**kwargs)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat_extensions/tasks/rearrange/env.py", line 34, in resetobservations = super().reset()File "/home/lu/.conda/envs/hab-mm/lib/python3.7/contextlib.py", line 74, in innerreturn func(*args, **kwds)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 405, in resetreturn self._env.reset()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 253, in resetself.reconfigure(self._config)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 339, in reconfigureself._sim.reconfigure(self._config.SIMULATOR)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat_extensions/tasks/rearrange/sim.py", line 165, in reconfigureself._add_rigid_objects()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat_extensions/tasks/rearrange/sim.py", line 190, in _add_rigid_objectsobj.transformation = mn_utils.orthogonalize(T)
AttributeError: 'NoneType' object has no attribute 'transformation'

这里要特别注意M3采用的是ycb1.1而非habitat-challenge中的1.2,所以在跑M3的使用一定要用1.1的版本。否则会出现找不到数据的错误。

cd objects
rm ycb
ln -s ../versioned_data/ycb_1.1 ycb

问题三:下载数据集

下载benchmark数据。
可以参考datasets_download.py文件中有写对应文件的link和version。

突然出现错误:

python -m habitat_sim.utils.datasets_download --uids hab2_bench_assets --data-path <path to download folder>
(hab-mm) lu@lu:~/Desktop/embodied_ai/hab-mobile-manipulation$ python habitat_extensions/tasks/rearrange/play.py
pybullet build time: Sep 22 2020 00:55:20
Loaded /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/play.yaml
Merging /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/base.yaml into /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/play.yaml
Loaded /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/base.yaml
Merging /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/__base__.py into /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/base.yaml
Loaded /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/__base__.py
2023-09-20 17:46:41,099 Initializing dataset RearrangeDataset-v0
2023-09-20 17:46:41,917 initializing sim RearrangeSim-v0
Traceback (most recent call last):File "habitat_extensions/tasks/rearrange/play.py", line 271, in <module>main()File "habitat_extensions/tasks/rearrange/play.py", line 221, in mainenv: RearrangeRLEnv = env_cls(config)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat_extensions/tasks/rearrange/env.py", line 31, in __init__super().__init__(self._core_env_config, dataset=dataset)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 374, in __init__self._env = Env(config, dataset)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 105, in __init__id_sim=self._config.SIMULATOR.TYPE, config=self._config.SIMULATORFile "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/sims/registration.py", line 19, in make_simreturn _sim(**kwargs)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat_extensions/tasks/rearrange/sim.py", line 63, in __init__super().__init__(config)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/sims/habitat_simulator/habitat_simulator.py", line 282, in __init__for path in self.habitat_config.ADDITIONAL_OBJECT_PATHS:File "/home/lu/.conda/envs/hab-mm/lib/python3.7/site-packages/yacs/config.py", line 141, in __getattr__raise AttributeError(name)
AttributeError: ADDITIONAL_OBJECT_PATHS

是因为版本问题,只能用它自带的版本,不能用habitat-challenge中的版本。

有其他问题欢迎一起交流学习!

这篇关于habitat challenge rearrangement代码复现细节及踩坑实录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/614303

相关文章

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤