habitat challenge rearrangement代码复现细节及踩坑实录

2024-01-16 23:44

本文主要是介绍habitat challenge rearrangement代码复现细节及踩坑实录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

具身智能移动操作

Habitat-Challenge是2022年Meta发起的具身智能挑战赛之一,主要是重拍任务。具体细节可以参见以下两篇论文:
1、Habitat 2.0: Training Home Assistants to Rearrange their Habitat,这篇论文中提出了任务细节,以及对应的Baseline方法MonolithicRL和TP-SRL,其中MonolithicRL是采用端到端RL的方法,TP-SRL是采用分层的方法,上层任务规划下层子技能;
对应github官网
2、Multi-skill mobile manipulation for object rearrangement,这篇论文是目前成功率最高的方法,后续简称M3;
对应gibhub官网
具身智能
具体实现细节参照论文后续只描述代码复现过程中遇到的一些坑,可能可以帮助后续学者节省时间。

环境安装:

1.安装habitat-sim:

如果直接采用官网给的conda install habitat-sim withbullet -c conda-forge -c aihabitat命令,很有可能由于网络问题导致配置失败。
有两种替代的安装方式:
方式一:直接去Habitat-sim Conda官网下载对应的包。
下载对应的安装包
方式二:可以直接下载对应的Habitat-sim包,采用如下命令安装:

cd habitat-sim
pip install -r requirements.txt
python setup.py install --bullet --headless 
cd ..

选择Habitat-sim时需要注意一是要与Habitat的版本相匹配。一般要选择withbullet版本,而headless参数取决于是否需要显示,如没有显示器可以安装headless的版本。最好根据github界面中对应的readme指示来,如withbullet和headless就要下载conda对应的版本。
安装细节

2.安装Habitat-lab

这里需要特别注意的是因为habitat-lab不是一个库,所以一个conda环境可能就对应了一个habitat-lab环境。直接在安装包里下载即可。

git clone --branch stable https://github.com/facebookresearch/habitat-lab.git
cd habitat-lab
pip install -e habitat-lab  # install habitat_lab
或者
python -m pip install -e .

3.安装成功结果:

可以看到二者对应的版本其实是不一样的,
我这里hab-mm对应的是M3的conda环境,对应的habitat和habitat-sim版本都是0.2.1;
而在habitat对应的是habitat-challenge官方环境,对应的habitat和habitat-sim版本都是0.2.2;
habitat仿真器对于环境要求较为严格,因此如果不对应可能会出现意向不到的错误。
安装成功结果

habitat-challenge仿真踩坑

安装环境后可能出现的问题:

安装环境时可能出现的小问题:
OSError: /home/lu/.conda/envs/habitat/lib/python3.7/site-packages/nvidia/cublas/lib/libcublas.so.11: undefined symbol: cublasLtHSHMatmulAlgoInit, version libcublasLt.so.11
需要在~/.bashrc文件里加上一句:

export LD_LIBRARY_PATH=/home/lu/.conda/envs/habitat/lib/python3.7/site-packages/nvidia/cublas/lib/:$LD_LIBRARY_PATH

命令一:执行MonolithicRL时:

执行命令:

#/bin/bashexport MAGNUM_LOG=quiet
export HABITAT_SIM_LOG=quietset -x
python habitat-lab/habitat_baselines/run.py \--exp-config configs/methods/ddppo_monolithic.yaml \--run-type train \BASE_TASK_CONFIG_PATH configs/tasks/rearrange.local.rgbd.yaml \TASK_CONFIG.DATASET.SPLIT 'train' \TASK_CONFIG.TASK.TASK_SPEC_BASE_PATH configs/pddl/ \TENSORBOARD_DIR tb \CHECKPOINT_FOLDER checkpoints \LOG_FILE train.log

问题一:提示Not a gzipped file:

报错
检查路径是否有问题:
因为对应了pointnav_dataset.py函数中,

datasetfile_path = config.DATA_PATH.format(split=config.SPLIT)
with gzip.open(datasetfile_path, "rt") as f:self.from_json(f.read(), scenes_dir=config.SCENES_DIR)

问题二:在训练过程中总报错EOFError:

Traceback (most recent call last):File "habitat-lab/habitat_baselines/run.py", line 81, in <module>main()File "habitat-lab/habitat_baselines/run.py", line 40, in mainrun_exp(**vars(args))File "habitat-lab/habitat_baselines/run.py", line 77, in run_expexecute_exp(config, run_type)File "habitat-lab/habitat_baselines/run.py", line 60, in execute_exptrainer.train()File "/home/lu/.conda/envs/habitat/lib/python3.7/contextlib.py", line 74, in innerreturn func(*args, **kwds)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat_baselines/rl/ppo/ppo_trainer.py", line 715, in trainself._init_train()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat_baselines/rl/ppo/ppo_trainer.py", line 254, in _init_trainself._init_envs()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat_baselines/rl/ppo/ppo_trainer.py", line 204, in _init_envsworkers_ignore_signals=is_slurm_batch_job(),File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat_baselines/common/construct_vector_env.py", line 97, in construct_envsworkers_ignore_signals=workers_ignore_signals,File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 200, in __init__read_fn() for read_fn in self._connection_read_fnsFile "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 200, in <listcomp>read_fn() for read_fn in self._connection_read_fnsFile "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 103, in __call__res = self.read_fn()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/utils/pickle5_multiprocessing.py", line 68, in recvbuf = self.recv_bytes()File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 216, in recv_bytesbuf = self._recv_bytes(maxlength)File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytesbuf = self._recv(4)File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 379, in _recvchunk = read(handle, remaining)
ConnectionResetError: [Errno 104] Connection reset by peer
Exception ignored in: <function VectorEnv.__del__ at 0x7fafedb180e0>
Traceback (most recent call last):File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 584, in __del__self.close()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 452, in closeread_fn()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 103, in __call__res = self.read_fn()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/utils/pickle5_multiprocessing.py", line 68, in recvbuf = self.recv_bytes()File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 216, in recv_bytesbuf = self._recv_bytes(maxlength)File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytesbuf = self._recv(4)File "/home/lu/.conda/envs/habitat/lib/python3.7/multiprocessing/connection.py", line 383, in _recvraise EOFError
EOFError:

在Github上读到:
gpu问题
可能是由于GPU训练不了,可以修改:
habitat-challenge/habitat-lab/habitat_baselines/common/construct_vector_env.py文件
分析中的74行可以看到这里做了一个判断:

    if int(os.environ.get("HABITAT_ENV_DEBUG", 0)):logger.warn("Using the debug Vector environment interface. Expect slower performance.")vector_env_cls = ThreadedVectorEnvelse:vector_env_cls = VectorEnvenvs = vector_env_cls(make_env_fn=make_gym_from_config,env_fn_args=tuple((c,) for c in configs),workers_ignore_signals=workers_ignore_signals,)

因为VectorEnv不是所有gpu都带得动,直接把vector_env_cls强行指定为ThreadedVectorEnv就好。

envs = ThreadedVectorEnv(make_env_fn=make_gym_from_config,env_fn_args=tuple((c,) for c in configs),workers_ignore_signals=workers_ignore_signals,)

具体原因可以看官网给出的解释:

Debugging an environment issue

Our vectorized environments are very fast, but they are not very verbose. When using VectorEnv some errors may be silenced, resulting in process hanging or multiprocessing errors that are hard to interpret. We recommend setting the environment variable HABITAT_ENV_DEBUG to 1 when debugging (export HABITAT_ENV_DEBUG=1) as this will use the slower, but more verbose ThreadedVectorEnv class. Do not forget to reset HABITAT_ENV_DEBUG (unset HABITAT_ENV_DEBUG) when you are done debugging since VectorEnv is much faster than ThreadedVectorEnv.
且可以看habitat.core.vector_env:
仿真环境区别

命令二:分层强化学习代码(TP-SRL):

问题一:无法找到路径

执行命令该命令需要在habitat-lab文件夹下执行,否则需要修改对应的.yaml文件:

python habitat_baselines/run.py \--exp-config habitat-lab/habitat_baselines/config/rearrange/ddppo_open_cab.yaml \--run-type train \TENSORBOARD_DIR ../pick_tb/ \CHECKPOINT_FOLDER ../pick_checkpoints/ \LOG_FILE ../pick_train.log

因为它给的config都是相对路径
比如上面我要运行habitat-lab/habitat_baselines/config/rearrange/ddppo_open_cab.yaml文件我就需要修改BASE_TASK_CONFIG_PATH部分,将其修改为从habitat-challenge下运行的路径。其他yaml文件同理。
相对路径
如果直接在habitat-lab文件下执行也需要注意,需要创建一个执行数据的软链接,因为它会直接在该目录下找数据:

ln -s ../data data

问题二:AssertionError: Object attributes not uniquely matched to shortened handle.

这个问题是由于objects/ycb的版本导致的:

Traceback (most recent call last):File "habitat_baselines/run.py", line 81, in <module>
Process ForkServerProcess-26:
Traceback (most recent call last):File "/home/lu/.conda/envs/hab-mm/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrapself.run()File "/home/lu/.conda/envs/hab-mm/lib/python3.7/multiprocessing/process.py", line 99, in runself._target(*self._args, **self._kwargs)File "/home/lu/.conda/envs/hab-mm/lib/python3.7/contextlib.py", line 74, in innerreturn func(*args, **kwds)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 262, in _worker_envobservations = env.reset()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/gym_env_episode_count_wrapper.py", line 50, in resetreturn self.env.reset(**kwargs)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/gym_env_obs_dict_wrapper.py", line 32, in resetreturn self.env.reset(**kwargs)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/utils/gym_adapter.py", line 287, in resetobs = self._env.reset()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/environments.py", line 47, in resetobservations = super().reset()File "/home/lu/.conda/envs/hab-mm/lib/python3.7/contextlib.py", line 74, in innerreturn func(*args, **kwds)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 402, in resetreturn self._env.reset()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 250, in resetself.reconfigure(self._config)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 336, in reconfigureself._sim.reconfigure(self._config.SIMULATOR)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/tasks/rearrange/rearrange_sim.py", line 223, in reconfigureself._add_objs(ep_info, should_add_objects)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/tasks/rearrange/rearrange_sim.py", line 409, in _add_objs), f"Object attributes not uniquely matched to shortened handle. '{obj_handle}' matched to {matching_templates}. TODO: relative paths as handles should fix some duplicates. For now, try renaming objects to avoid collision."
AssertionError: Object attributes not uniquely matched to shortened handle. '005_tomato_soup_can.object_config.json' matched to {}. TODO: relative paths as handles should fix some duplicates. For now, try renaming objects to avoid collision.

在pick.yaml文件中:

ADDITIONAL_OBJECT_PATHS:
- "data/objects/ycb/configs/"

而存在两个ycb,ycb_1.1和ycb_1.2,其中ycb_1.1中没有configs的文件夹,在ycb_1.2中有。可以看到在data/versioned_data文件夹下有两个版本的ycb:
ycb
因此解决这个错误只需要链接正确的ycb到objects目录下:

cd objects
ln -s ../versioned_data/ycb_1.2 ycb

问题三:

这就是纯粹gpu带不起:

torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB (GPU 0; 7.77 GiB total capacity; 5.21 GiB already allocated; 191.38 MiB free; 5.22 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

可以试一试修改参数:
可以修改habitat_baselines/config/rearrange/ddppo_pick.yaml中的NUM_ENVIRONMENTS参数,原本是32改成了16可能可以训练。

M3仿真踩坑

M3中相对问题较少,基本上安装就能使用。

问题一:EOF问题

这个问题和Habitat-challenge中出现问题的原因如出一辙,几乎一样。只是在代码中需要修改的位置不一样。
需要修改mobile_manipulation/utils//env_utils.py中的文件:
直接把它原本的代码注释,换成vec_env_cls = ThreadedVectorEnv,强制指定环境为ThreadedVectorEnv即可。

#vec_env_cls = ThreadedVectorEnv if debug else VectorEnvvec_env_cls = ThreadedVectorEnvenvs = vec_env_cls(make_env_fn=make_env_fn,env_fn_args=tuple(zip(configs, env_classes, [wrappers] * num_envs)),workers_ignore_signals=workers_ignore_signals,auto_reset_done=auto_reset_done,)

问题二:ycb的问题

Exception in thread Thread-26:
Traceback (most recent call last):File "/home/lu/.conda/envs/hab-mm/lib/python3.7/threading.py", line 926, in _bootstrap_innerself.run()File "/home/lu/.conda/envs/hab-mm/lib/python3.7/threading.py", line 870, in runself._target(*self._args, **self._kwargs)File "/home/lu/.conda/envs/hab-mm/lib/python3.7/contextlib.py", line 74, in innerreturn func(*args, **kwds)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/vector_env.py", line 262, in _worker_envobservations = env.reset()File "/home/lu/.conda/envs/hab-mm/lib/python3.7/site-packages/gym/core.py", line 337, in resetreturn self.env.reset(**kwargs)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat_extensions/tasks/rearrange/env.py", line 34, in resetobservations = super().reset()File "/home/lu/.conda/envs/hab-mm/lib/python3.7/contextlib.py", line 74, in innerreturn func(*args, **kwds)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 405, in resetreturn self._env.reset()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 253, in resetself.reconfigure(self._config)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 339, in reconfigureself._sim.reconfigure(self._config.SIMULATOR)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat_extensions/tasks/rearrange/sim.py", line 165, in reconfigureself._add_rigid_objects()File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat_extensions/tasks/rearrange/sim.py", line 190, in _add_rigid_objectsobj.transformation = mn_utils.orthogonalize(T)
AttributeError: 'NoneType' object has no attribute 'transformation'

这里要特别注意M3采用的是ycb1.1而非habitat-challenge中的1.2,所以在跑M3的使用一定要用1.1的版本。否则会出现找不到数据的错误。

cd objects
rm ycb
ln -s ../versioned_data/ycb_1.1 ycb

问题三:下载数据集

下载benchmark数据。
可以参考datasets_download.py文件中有写对应文件的link和version。

突然出现错误:

python -m habitat_sim.utils.datasets_download --uids hab2_bench_assets --data-path <path to download folder>
(hab-mm) lu@lu:~/Desktop/embodied_ai/hab-mobile-manipulation$ python habitat_extensions/tasks/rearrange/play.py
pybullet build time: Sep 22 2020 00:55:20
Loaded /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/play.yaml
Merging /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/base.yaml into /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/play.yaml
Loaded /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/base.yaml
Merging /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/__base__.py into /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/base.yaml
Loaded /home/lu/Desktop/embodied_ai/hab-mobile-manipulation/configs/rearrange/tasks/__base__.py
2023-09-20 17:46:41,099 Initializing dataset RearrangeDataset-v0
2023-09-20 17:46:41,917 initializing sim RearrangeSim-v0
Traceback (most recent call last):File "habitat_extensions/tasks/rearrange/play.py", line 271, in <module>main()File "habitat_extensions/tasks/rearrange/play.py", line 221, in mainenv: RearrangeRLEnv = env_cls(config)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat_extensions/tasks/rearrange/env.py", line 31, in __init__super().__init__(self._core_env_config, dataset=dataset)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 374, in __init__self._env = Env(config, dataset)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/core/env.py", line 105, in __init__id_sim=self._config.SIMULATOR.TYPE, config=self._config.SIMULATORFile "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/sims/registration.py", line 19, in make_simreturn _sim(**kwargs)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat_extensions/tasks/rearrange/sim.py", line 63, in __init__super().__init__(config)File "/home/lu/Desktop/embodied_ai/hab-mobile-manipulation/habitat-lab/habitat/sims/habitat_simulator/habitat_simulator.py", line 282, in __init__for path in self.habitat_config.ADDITIONAL_OBJECT_PATHS:File "/home/lu/.conda/envs/hab-mm/lib/python3.7/site-packages/yacs/config.py", line 141, in __getattr__raise AttributeError(name)
AttributeError: ADDITIONAL_OBJECT_PATHS

是因为版本问题,只能用它自带的版本,不能用habitat-challenge中的版本。

有其他问题欢迎一起交流学习!

这篇关于habitat challenge rearrangement代码复现细节及踩坑实录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/614303

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计