本文主要是介绍【CV】图像去模糊(逆滤波),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
###Date: 2018.5.8
================================================
转载自:https://blog.csdn.net/bluecol/article/details/47357717
引言
图像模糊是一种拍摄常见的现象,我曾在图像去模糊(维纳滤波) 介绍过。这里不再详述,只给出物理模型,这里我们仍在频率域表示
G(u,v)=H(u,v)F(u,v)+N(u,v)(1) G(u,v)=H(u,v)F(u,v)+N(u,v)(1)
其中提到最简单的复原方法是直接做逆滤波(Inverse filter)。
F^(u,v)=G(u,v)H(u,v)(2) F^(u,v)=G(u,v)H(u,v)(2)
该除法是阵列操作,即按位除。
在含有噪声情况下,将(1)式两端除以
H(u,v) H(u,v)
F^(u,v)=F(u,v)+N(u,v)H(u,v)(3) F^(u,v)=F(u,v)+N(u,v)H(u,v)(3)
这里
N(u,v) N(u,v)
未知,式子表明,即使知道退化函数也不能准备复原图像。还有当退化函数
H(u,v) H(u,v)
是零或者非常小的值,则
N(u,v)H(u,v) N(u,v)H(u,v)
很容易支配整个式子。
下面我将用代码说明一下逆滤波,这里我采用直接编码形式。对了,前面我提到过,当噪声信息比
NSR
等于0时,此时维娜滤波等同于逆滤波。因此可以直接使用matlab自带deconvwnr函数,将第三个参数
NSR
设置成0即可,省事的同学可以试一下。
代码
close all;
clear all;
clc;
% Display the original image.
I = im2double(imread('lena.jpg'));
[hei,wid,~] = size(I);
subplot(2,3,1),imshow(I);
title('Original Image (courtesy of MIT)');% Simulate a motion blur.
LEN = 21;
THETA = 11;
PSF = fspecial('motion', LEN, THETA);
blurred = imfilter(I, PSF, 'conv', 'circular');
subplot(2,3,2), imshow(blurred); title('Blurred Image');% Inverse filter
If = fft2(blurred);
Pf = fft2(PSF,hei,wid);
deblurred = ifft2(If./Pf);
subplot(2,3,3), imshow(deblurred); title('Restore Image')% Simulate additive noise.
noise_mean = 0;
noise_var = 0.0001;
blurred_noisy = imnoise(blurred, 'gaussian', ...noise_mean, noise_var);
subplot(2,3,4), imshow(blurred_noisy)
title('Simulate Blur and Noise')% Try restoration assuming no noise.
If = fft2(blurred_noisy);
deblurred2 = ifft2(If./Pf);
subplot(2,3,5), imshow(deblurred2)
title('Restoration of Blurred Assuming No Noise');% Try restoration with noise is known.
noisy = blurred_noisy - blurred;
Nf = fft2(noisy);
deblurred2 = ifft2(If./Pf - Nf./Pf);
subplot(2,3,6), imshow(deblurred2)
title('Restoration of Blurred with Noise Is Known')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
这里使用了经典的lena图是灰度图像,分别对图像进行运动模糊,逆滤波,运动模糊+高斯噪声,假定噪声未知直接逆滤波,噪声已知逆滤波。
效果
说明
逆滤波对噪声非常敏感,除非我们知道噪声的分布情况(事实上,这也很难知道),逆滤波几乎不可用,可以从二排中间看出,恢复图像效果极差。但若知道噪声分布,也是可以完全复原信息的。可以从二排最后一张图可以看出。写作本文的目的也仅是在数学角度上对图像模糊现象进行分析,后续会介绍更加有效的图像复原方法,敬请关注。
相关阅读及参考文献
图像去模糊(维纳滤波) http://blog.csdn.net/bluecol/article/details/46242355
图像去模糊(约束最小二乘滤波) http://blog.csdn.net/bluecol/article/details/47359421
数字图像处理(第三版) 冈萨雷斯著 chapter 5,图像复原与重建
转载请保留以下信息
作者 | 日期 | 联系方式 |
---|
风吹夏天 | 2015年8月8日 | wincoder@qq.com |
这篇关于【CV】图像去模糊(逆滤波)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!