Simon算法详解

2024-01-16 14:20
文章标签 算法 详解 simon

本文主要是介绍Simon算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.0 Intro

相关的算法:
Deutsh-Jozsa算法:
    第一个量子算法对经典算法取得指数级加速的算法
    美中不足在于只能确定函数是平衡的还是非平衡的,无法确定函数具体的内容,即无法直接解出函数
Bernstein-Vazirani算法:
    在Deutsh-Jozsa算法基础上进一步提出,能够直接解出算法本身
    同样存在问题,即没有实现指数级的加速

Simon算法 在上述两个算法的基础上更进一步,体现在两个方面
一方面,Simon算法可以在Simon问题中,直接解出目标函数
另一方面,Simon问题的经典解法是指数级复杂度,而Simon算法相较经典算法也是取得了指数级的加速。

1.1 Simon问题(Simon’s Problem)

现有一未知数,其作用域和值域都是n位的二进制数据: f : { 0 , 1 } n → { 0 , 1 } n f:\left \{ 0,1\right \}^{n} \to \left \{ 0,1\right \}^{n} f:{0,1}n{0,1}n
该函数是单射或对称函数中的一种。当函数为对称时,有: x 1 + x 2 = s , f ( x 1 ) = f ( x 2 ) x_{1}+ x_{2}=s,f(x_{1})=f(x_{2}) x1+x2=sf(x1)=f(x2)现需确定函数的属性,若属于对称函数需进一步确定 s

小贴士:

  • 单射函数即作用域上每一个输入都有唯一输出的函数,常见的有实数域上所有的线性函数,例如f(x)=x、f(x)=lnx等都是单射函数
  • 对称函数的性质在上面已经说明,其中s其实是x1和x2的对称轴,常见的对称函数即二次函数,例如f(x)=x^2,其对称轴s=0

1.2 Simon问题分析与经典解法的思路

1.2.1 Simon问题分析

需要注意的是,Simon问题中提到的值域和作用域始终都是n位二进制数,进行的加法严格意义上说是模二加法, 在模二加法中两个二进制数相加为0即表示这两个二进制数是相等的,因此可对Simon问题进行如下简化:

  • 对于单射函数,显然有:在x1=x2时, x 1 + x 2 = 0 , f ( x 1 ) = f ( x 2 ) x_{1}+ x_{2}=0,f(x_{1})=f(x_{2}) x1+x2=0f(x1)=f(x2)因此,s=0即为在单射函数情况下的解
  • 对于对称函数,除了s=0这一个解之外,显然还有另一个非平凡解,即为对称函数对称轴的位置

小贴士

  • 平凡解就是显而易见的解、没有讨论的必要但是为了结果的完整性仍需要考虑的结果,比如Ax=0中的零解,即x=0,即为平凡解
  • 非平凡解(nontrivial solution)是齐次方程或齐次方程组的非零解。

1.2.2 Simon问题的经典解法(暴力解法)

可以通过将作用域取值不断带入进行验证的方法进行求解,考虑到单射函数与对称函数的区别,不必将整个作用域带入,只需要带入作用域的一半+1次即可完成验证。
作用域是n位二进制数,因此需要进行验证的次数为: 2 n − 1 + 1 2^{n-1}+1 2n1+1
这里解释一下验证一半作用域后额外再验证一次的原因。最坏的情况下,验证一半作用域后会发现每一个输出都是唯一的,那么就需要额外再进行一次,将额外的一次结果与前面一半作用域产生的值进行比对:

  • 如果仍然是新的唯一输出,则表明这是一个单射函数;
  • 如果能与之前某个输出值匹配,则表明这是一个对称函数,该输出对应的输入值和这额外的一次输入值就可以确定对称轴的位置。

因而,Simon问题经典解法的时间复杂度是 O ( 2 n ) O(2^n) O(2n)

2.1 Simon算法详解

2024.1.15 待续…

这篇关于Simon算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/612873

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)