数字图像处理:全局阈值处理与Otsu算法

2024-01-16 09:12

本文主要是介绍数字图像处理:全局阈值处理与Otsu算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数字图像处理:全局阈值处理

基本的全局阈值处理

当目标和背景像素的灰度分布非常不同时,可对整个图像使用单个(全局)阈值。在大多数应用中,图像之间存在足够的变化时,使用全局阈值是一种合适的方法。也需要有能对每幅图像估计阈值的算法:

  1. 为全局阈值 T T T 选择一个初始估计值;
  2. 基于初始 T T T 分割图像,这将残生两组像素,由灰度值大于 T T T 的所有像素组成的 G 1 G_1 G1,由所有小于等于 T T T 的像素组成的 G 2 G_2 G2 ;
  3. G 1 G_1 G1 G 2 G_2 G2 中的像素分别计算平均灰度值 (均值) m 1 m_1 m1 m 2 m_2 m2 ;
  4. m 1 m_1 m1 m 2 m_2 m2之间计算一个新的阈值: T = m 1 + m 2 2 T = \frac{m_1+m_2}{2} T=2m1+m2;
  5. 重复步骤 2 和 步骤 4,直到连续迭代中两个 T T T 值之间的差值小于某个预定义的值 Δ T \Delta T ΔT 为止。

当与目标和背景相关的直方图模式之间存在一个非常清晰的波谷时,上述算法很有效。参数 Δ T \Delta T ΔT 用于在阈值变化不大时停止迭代。初始阈值必须大于图像中的最小灰度级、小于图像中的最大灰度级,选择图像的平均灰度作为初始值最好。满足这个条件时,无论模式是否可分,算法都会在有限数量的步骤内收敛。

使用Otus 方法的最优全局阈值处理

阈值处理可视为一种统计决策理论问题,其目的是在把像素分配给两组或多组(也称分类)的过程中,使引入的平均误差最小。对于这个问题,已知有一个解析解,称为贝叶斯决策函数。 这个解析解仅基于两个参数:每类灰度级的概率密度函数 (PDF )和已知应用中每类出现的概率。遗憾的是,估计PDF 并不容易,因此通常采用 一种假设的PDF 形式来简化这 一问题,如假设它们是高斯函数。即使采用了这一形式的简化,使用这些假设求解的过程也很复杂,并且对实时应用来说也并非总是合适的。

Otsu方法,也称为大津法,是一种用于图像处理中图像二值化的自适应阈值选择方法。该方法由日本学者大津秀一(Nobuyuki Otsu)于1979年提出。Otsu方法旨在找到一个阈值,将图像分为两个类别(前景和背景),使得类别内的方差最小,同时类别之间的方差最大。,Otsu方法还有一个重要的性质,即它完全基 于对图像的直方图。

  1. 直方图计算: 计算图像的直方图,即每个像素值的频率分布。

  2. 归一化直方图: 将直方图归一化,得到每个像素值的概率分布: P ( i ) = n i N i P(i) = \frac{n_i}{N_i} P(i)=Nini

  3. 计算类内方差: 对于每个可能的阈值,计算两个类别(前景和背景)内的方差之和。方差的计算方式为:

    类内方差= w 0 ⋅ σ 0 2 + w 1 ⋅ σ 1 2 w_0\cdot \sigma_0^2 +w_1\cdot \sigma_{1}^2 w0σ02+w1σ12

    其中:

    • w 0 w_0 w0 w 1 w_1 w1 是两个类别的权重(概率);
    • σ 0 2 \sigma_0^2 σ02 σ 1 2 \sigma_1^2 σ12 是两个类别的方差。
  4. 选择最优阈值: 找到使得类内方差最小的阈值,即:

    a r g m i n t ( w 0 ( t ) ⋅ σ 0 2 ( t ) + w 1 ( t ) ⋅ σ 1 2 ( t ) ) {\rm argmin_t}(w_0(t)\cdot \sigma_{0}^{2}(t)+w_1(t)\cdot \sigma_1^2(t)) argmint(w0(t)σ02(t)+w1(t)σ12(t))

    其中 t t t 是阈值。

  5. 应用阈值: 使用找到的最优阈值对图像进行二值化,将图像分为前景和背景。

这样,Otsu方法通过优化类别内方差,自适应地选择了一个合适的阈值,有效地将图像分割成两个类别。该方法在处理具有双峰直方图的图像时表现良好,例如在目标和背景具有清晰对比度的情况下。

在Python中,你可以使用一些图像处理库,如OpenCV或Scikit-Image,来实现Otsu方法。以下是一个使用OpenCV的简单示例:

这样,Otsu方法通过优化类别内方差,自适应地选择了一个合适的阈值,有效地将图像分割成两个类别。该方法在处理具有双峰直方图的图像时表现良好,例如在目标和背景具有清晰对比度的情况下。

在Python中,可以使用一些图像处理库,如OpenCV或Scikit-Image,来实现Otsu方法。以下是一个使用OpenCV的简单示例:

import cv2
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('example_image.jpg', cv2.IMREAD_GRAYSCALE)# 应用Otsu二值化
_, binary_image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)# 显示原始图像和二值化结果
plt.subplot(1, 2, 1)
plt.imshow(image, cmap='gray')
plt.title('Original Image')plt.subplot(1, 2, 2)
plt.imshow(binary_image, cmap='gray')
plt.title('Otsu Thresholding')plt.show()

请注意,为了使用Otsu方法,使用了cv2.THRESH_BINARY + cv2.THRESH_OTSU标志。这将告诉OpenCV在threshold函数中使用Otsu方法来自适应地选择阈值。

这篇关于数字图像处理:全局阈值处理与Otsu算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/612051

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件