本文主要是介绍AIGC笔记--VQVAE模型搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1--VQVAE模型
VAE 模型生成的内容质量不高,原因可能在于将图片编码成连续变量(映射为标准分布),然而将图片编码成离散变量可能会更好(因为现实生活中习惯用离散变量来形容事物,例如人的高矮胖瘦等都是离散的;)
VQVAE模型的三个关键模块:Encoder、Decoder 和 Codebook;
Encoder 将输入编码成特征向量,计算特征向量与 Codebook 中 Embedding 向量的相似性(L2距离),取最相似的 Embedding 向量作为特征向量的替代,并输入到 Decoder 中进行重构输入;
VQVAE的损失函数包括源图片和重构图片的重构损失,以及 Codebook 中量化过程的量化损失 vq_loss;
VQ-VAE详细介绍参考:轻松理解 VQ-VAE
2--简单代码实例
import torch
import torch.nn as nn
import torch.nn.functional as Fclass VectorQuantizer(nn.Module):def __init__(self, num_embeddings, embedding_dim, commitment_cost):super(VectorQuantizer, self).__init__()self._embedding_dim = embedding_dimself._num_embeddings = num_embeddingsself._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim)self._embedding.weight.data.uniform_(-1/self._num_embeddings, 1/self._num_embeddings)self._commitment_cost = commitment_costdef forward(self, inputs):# convert inputs from BCHW -> BHWCinputs = inputs.permute(0, 2, 3, 1).contiguous()input_shape = inputs.shape# Flatten inputflat_input = inputs.view(-1, self._embedding_dim)# Calculate distancesdistances = (torch.sum(flat_input**2, dim=1, keepdim=True) + torch.sum(self._embedding.weight**2, dim=1)- 2 * torch.matmul(flat_input, self._embedding.weight.t()))# Encodingencoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)encodings = torch.zeros(encoding_indices.shape[0], self._num_embeddings, device=inputs.device)encodings.scatter_(1, encoding_indices, 1)# Quantize and unflattenquantized = torch.matmul(encodings, self._embedding.weight).view(input_shape)# Losse_latent_loss = F.mse_loss(quantized.detach(), inputs) # 论文中损失函数的第三项q_latent_loss = F.mse_loss(quantized, inputs.detach()) # 论文中损失函数的第二项loss = q_latent_loss + self._commitment_cost * e_latent_lossquantized = inputs + (quantized - inputs).detach() # 梯度复制avg_probs = torch.mean(encodings, dim=0)perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))# convert quantized from BHWC -> BCHWreturn loss, quantized.permute(0, 3, 1, 2).contiguous(), perplexity, encodingsclass VectorQuantizerEMA(nn.Module):def __init__(self, num_embeddings, embedding_dim, commitment_cost, decay, epsilon=1e-5):super(VectorQuantizerEMA, self).__init__()self._embedding_dim = embedding_dimself._num_embeddings = num_embeddingsself._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim)self._embedding.weight.data.normal_()self._commitment_cost = commitment_costself.register_buffer('_ema_cluster_size', torch.zeros(num_embeddings))self._ema_w = nn.Parameter(torch.Tensor(num_embeddings, self._embedding_dim))self._ema_w.data.normal_()self._decay = decayself._epsilon = epsilondef forward(self, inputs):# convert inputs from BCHW -> BHWCinputs = inputs.permute(0, 2, 3, 1).contiguous()input_shape = inputs.shape # B(256) H(8) W(8) C(64)# Flatten input BHWC -> BHW, Cflat_input = inputs.view(-1, self._embedding_dim)# Calculate distances 计算与embedding space中所有embedding的距离distances = (torch.sum(flat_input**2, dim=1, keepdim=True) + torch.sum(self._embedding.weight**2, dim=1)- 2 * torch.matmul(flat_input, self._embedding.weight.t()))# Encodingencoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) # 取最相似的embeddingencodings = torch.zeros(encoding_indices.shape[0], self._num_embeddings, device=inputs.device)encodings.scatter_(1, encoding_indices, 1) # 映射为 one-hot vector# Quantize and unflattenquantized = torch.matmul(encodings, self._embedding.weight).view(input_shape) # 根据index使用embedding space对应的embedding# Use EMA to update the embedding vectorsif self.training:self._ema_cluster_size = self._ema_cluster_size * self._decay + \(1 - self._decay) * torch.sum(encodings, 0)# Laplace smoothing of the cluster sizen = torch.sum(self._ema_cluster_size.data)self._ema_cluster_size = ((self._ema_cluster_size + self._epsilon)/ (n + self._num_embeddings * self._epsilon) * n) dw = torch.matmul(encodings.t(), flat_input)self._ema_w = nn.Parameter(self._ema_w * self._decay + (1 - self._decay) * dw) self._embedding.weight = nn.Parameter(self._ema_w / self._ema_cluster_size.unsqueeze(1)) # 论文中公式(8)# Losse_latent_loss = F.mse_loss(quantized.detach(), inputs) # 计算encoder输出(即inputs)和decoder输入(即quantized)之间的损失loss = self._commitment_cost * e_latent_loss# Straight Through Estimatorquantized = inputs + (quantized - inputs).detach() # trick, 将decoder的输入对应的梯度复制,作为encoder的输出对应的梯度avg_probs = torch.mean(encodings, dim=0)perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))# convert quantized from BHWC -> BCHWreturn loss, quantized.permute(0, 3, 1, 2).contiguous(), perplexity, encodingsclass Residual(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_hiddens):super(Residual, self).__init__()self._block = nn.Sequential(nn.ReLU(True),nn.Conv2d(in_channels = in_channels,out_channels = num_residual_hiddens,kernel_size = 3, stride = 1, padding = 1, bias = False),nn.ReLU(True),nn.Conv2d(in_channels = num_residual_hiddens,out_channels = num_hiddens,kernel_size = 1, stride = 1, bias = False))def forward(self, x):return x + self._block(x)class ResidualStack(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):super(ResidualStack, self).__init__()self._num_residual_layers = num_residual_layersself._layers = nn.ModuleList([Residual(in_channels, num_hiddens, num_residual_hiddens)for _ in range(self._num_residual_layers)])def forward(self, x):for i in range(self._num_residual_layers):x = self._layers[i](x)return F.relu(x)class Encoder(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):super(Encoder, self).__init__()self._conv_1 = nn.Conv2d(in_channels = in_channels,out_channels = num_hiddens//2,kernel_size = 4,stride = 2, padding = 1)self._conv_2 = nn.Conv2d(in_channels = num_hiddens//2,out_channels = num_hiddens,kernel_size = 4,stride = 2, padding = 1)self._conv_3 = nn.Conv2d(in_channels = num_hiddens,out_channels = num_hiddens,kernel_size = 3,stride = 1, padding = 1)self._residual_stack = ResidualStack(in_channels = num_hiddens,num_hiddens = num_hiddens,num_residual_layers = num_residual_layers,num_residual_hiddens = num_residual_hiddens)def forward(self, inputs):x = self._conv_1(inputs)x = F.relu(x)x = self._conv_2(x)x = F.relu(x)x = self._conv_3(x)return self._residual_stack(x)class Decoder(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):super(Decoder, self).__init__()self._conv_1 = nn.Conv2d(in_channels=in_channels,out_channels=num_hiddens,kernel_size=3, stride=1, padding=1)self._residual_stack = ResidualStack(in_channels=num_hiddens,num_hiddens=num_hiddens,num_residual_layers=num_residual_layers,num_residual_hiddens=num_residual_hiddens)self._conv_trans_1 = nn.ConvTranspose2d(in_channels=num_hiddens, out_channels=num_hiddens//2,kernel_size=4, stride=2, padding=1)self._conv_trans_2 = nn.ConvTranspose2d(in_channels=num_hiddens//2, out_channels=3,kernel_size=4, stride=2, padding=1)def forward(self, inputs):x = self._conv_1(inputs)x = self._residual_stack(x)x = self._conv_trans_1(x)x = F.relu(x)return self._conv_trans_2(x)class Model(nn.Module):def __init__(self, num_hiddens, num_residual_layers, num_residual_hiddens, num_embeddings, embedding_dim, commitment_cost, decay=0):super(Model, self).__init__()self._encoder = Encoder(3, num_hiddens,num_residual_layers, num_residual_hiddens)self._pre_vq_conv = nn.Conv2d(in_channels = num_hiddens, out_channels = embedding_dim,kernel_size = 1, stride = 1)if decay > 0.0:self._vq_vae = VectorQuantizerEMA(num_embeddings, embedding_dim, commitment_cost, decay)else:self._vq_vae = VectorQuantizer(num_embeddings, embedding_dim,commitment_cost)self._decoder = Decoder(embedding_dim,num_hiddens, num_residual_layers, num_residual_hiddens)def forward(self, x): # x.shape: B(256) C(3) H(32) W(32)z = self._encoder(x)z = self._pre_vq_conv(z)loss, quantized, perplexity, _ = self._vq_vae(z)x_recon = self._decoder(quantized) # decoder解码还原图像 B(256) C(3) H(32) W(32)return loss, x_recon, perplexity
完整代码参考:liujf69/VQ-VAE
3--部分细节解读:
重构损失计算:
计算源图像和重构图像的MSE损失
vq_loss, data_recon, perplexity = self.model(data)
recon_error = F.mse_loss(data_recon, data) / self.data_variance
VQ量化损失计算:
inputs表示Encoder的输出,quantized是Codebook中与 inputs 最接近的向量;
# Loss
e_latent_loss = F.mse_loss(quantized.detach(), inputs) # 论文中损失函数的第三项
q_latent_loss = F.mse_loss(quantized, inputs.detach()) # 论文中损失函数的第二项
loss = q_latent_loss + self._commitment_cost * e_latent_loss
Decoder的梯度复制到Encoder中:inputs是Encoder的输出,quantized是Decoder的输入;
quantized = inputs + (quantized - inputs).detach() # 梯度复制
这篇关于AIGC笔记--VQVAE模型搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!