AIGC笔记--VQVAE模型搭建

2024-01-16 06:12
文章标签 笔记 模型 搭建 aigc vqvae

本文主要是介绍AIGC笔记--VQVAE模型搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1--VQVAE模型

        VAE 模型生成的内容质量不高,原因可能在于将图片编码成连续变量(映射为标准分布),然而将图片编码成离散变量可能会更好(因为现实生活中习惯用离散变量来形容事物,例如人的高矮胖瘦等都是离散的;)

        VQVAE模型的三个关键模块:EncoderDecoderCodebook

        Encoder 将输入编码成特征向量,计算特征向量与 Codebook 中 Embedding 向量的相似性(L2距离),取最相似的 Embedding 向量作为特征向量的替代,并输入到 Decoder 中进行重构输入;

        VQVAE的损失函数包括源图片和重构图片的重构损失,以及 Codebook 中量化过程的量化损失 vq_loss;

        VQ-VAE详细介绍参考:轻松理解 VQ-VAE

2--简单代码实例

import torch
import torch.nn as nn
import torch.nn.functional as Fclass VectorQuantizer(nn.Module):def __init__(self, num_embeddings, embedding_dim, commitment_cost):super(VectorQuantizer, self).__init__()self._embedding_dim = embedding_dimself._num_embeddings = num_embeddingsself._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim)self._embedding.weight.data.uniform_(-1/self._num_embeddings, 1/self._num_embeddings)self._commitment_cost = commitment_costdef forward(self, inputs):# convert inputs from BCHW -> BHWCinputs = inputs.permute(0, 2, 3, 1).contiguous()input_shape = inputs.shape# Flatten inputflat_input = inputs.view(-1, self._embedding_dim)# Calculate distancesdistances = (torch.sum(flat_input**2, dim=1, keepdim=True) + torch.sum(self._embedding.weight**2, dim=1)- 2 * torch.matmul(flat_input, self._embedding.weight.t()))# Encodingencoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)encodings = torch.zeros(encoding_indices.shape[0], self._num_embeddings, device=inputs.device)encodings.scatter_(1, encoding_indices, 1)# Quantize and unflattenquantized = torch.matmul(encodings, self._embedding.weight).view(input_shape)# Losse_latent_loss = F.mse_loss(quantized.detach(), inputs)  # 论文中损失函数的第三项q_latent_loss = F.mse_loss(quantized, inputs.detach()) # 论文中损失函数的第二项loss = q_latent_loss + self._commitment_cost * e_latent_lossquantized = inputs + (quantized - inputs).detach() # 梯度复制avg_probs = torch.mean(encodings, dim=0)perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))# convert quantized from BHWC -> BCHWreturn loss, quantized.permute(0, 3, 1, 2).contiguous(), perplexity, encodingsclass VectorQuantizerEMA(nn.Module):def __init__(self, num_embeddings, embedding_dim, commitment_cost, decay, epsilon=1e-5):super(VectorQuantizerEMA, self).__init__()self._embedding_dim = embedding_dimself._num_embeddings = num_embeddingsself._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim)self._embedding.weight.data.normal_()self._commitment_cost = commitment_costself.register_buffer('_ema_cluster_size', torch.zeros(num_embeddings))self._ema_w = nn.Parameter(torch.Tensor(num_embeddings, self._embedding_dim))self._ema_w.data.normal_()self._decay = decayself._epsilon = epsilondef forward(self, inputs):# convert inputs from BCHW -> BHWCinputs = inputs.permute(0, 2, 3, 1).contiguous()input_shape = inputs.shape # B(256) H(8) W(8) C(64)# Flatten input BHWC -> BHW, Cflat_input = inputs.view(-1, self._embedding_dim)# Calculate distances 计算与embedding space中所有embedding的距离distances = (torch.sum(flat_input**2, dim=1, keepdim=True) + torch.sum(self._embedding.weight**2, dim=1)- 2 * torch.matmul(flat_input, self._embedding.weight.t()))# Encodingencoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) # 取最相似的embeddingencodings = torch.zeros(encoding_indices.shape[0], self._num_embeddings, device=inputs.device)encodings.scatter_(1, encoding_indices, 1) # 映射为 one-hot vector# Quantize and unflattenquantized = torch.matmul(encodings, self._embedding.weight).view(input_shape) # 根据index使用embedding space对应的embedding# Use EMA to update the embedding vectorsif self.training:self._ema_cluster_size = self._ema_cluster_size * self._decay + \(1 - self._decay) * torch.sum(encodings, 0)# Laplace smoothing of the cluster sizen = torch.sum(self._ema_cluster_size.data)self._ema_cluster_size = ((self._ema_cluster_size + self._epsilon)/ (n + self._num_embeddings * self._epsilon) * n) dw = torch.matmul(encodings.t(), flat_input)self._ema_w = nn.Parameter(self._ema_w * self._decay + (1 - self._decay) * dw) self._embedding.weight = nn.Parameter(self._ema_w / self._ema_cluster_size.unsqueeze(1)) # 论文中公式(8)# Losse_latent_loss = F.mse_loss(quantized.detach(), inputs) # 计算encoder输出(即inputs)和decoder输入(即quantized)之间的损失loss = self._commitment_cost * e_latent_loss# Straight Through Estimatorquantized = inputs + (quantized - inputs).detach() # trick, 将decoder的输入对应的梯度复制,作为encoder的输出对应的梯度avg_probs = torch.mean(encodings, dim=0)perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))# convert quantized from BHWC -> BCHWreturn loss, quantized.permute(0, 3, 1, 2).contiguous(), perplexity, encodingsclass Residual(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_hiddens):super(Residual, self).__init__()self._block = nn.Sequential(nn.ReLU(True),nn.Conv2d(in_channels = in_channels,out_channels = num_residual_hiddens,kernel_size = 3, stride = 1, padding = 1, bias = False),nn.ReLU(True),nn.Conv2d(in_channels = num_residual_hiddens,out_channels = num_hiddens,kernel_size = 1, stride = 1, bias = False))def forward(self, x):return x + self._block(x)class ResidualStack(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):super(ResidualStack, self).__init__()self._num_residual_layers = num_residual_layersself._layers = nn.ModuleList([Residual(in_channels, num_hiddens, num_residual_hiddens)for _ in range(self._num_residual_layers)])def forward(self, x):for i in range(self._num_residual_layers):x = self._layers[i](x)return F.relu(x)class Encoder(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):super(Encoder, self).__init__()self._conv_1 = nn.Conv2d(in_channels = in_channels,out_channels = num_hiddens//2,kernel_size = 4,stride = 2, padding = 1)self._conv_2 = nn.Conv2d(in_channels = num_hiddens//2,out_channels = num_hiddens,kernel_size = 4,stride = 2, padding = 1)self._conv_3 = nn.Conv2d(in_channels = num_hiddens,out_channels = num_hiddens,kernel_size = 3,stride = 1, padding = 1)self._residual_stack = ResidualStack(in_channels = num_hiddens,num_hiddens = num_hiddens,num_residual_layers = num_residual_layers,num_residual_hiddens = num_residual_hiddens)def forward(self, inputs):x = self._conv_1(inputs)x = F.relu(x)x = self._conv_2(x)x = F.relu(x)x = self._conv_3(x)return self._residual_stack(x)class Decoder(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):super(Decoder, self).__init__()self._conv_1 = nn.Conv2d(in_channels=in_channels,out_channels=num_hiddens,kernel_size=3, stride=1, padding=1)self._residual_stack = ResidualStack(in_channels=num_hiddens,num_hiddens=num_hiddens,num_residual_layers=num_residual_layers,num_residual_hiddens=num_residual_hiddens)self._conv_trans_1 = nn.ConvTranspose2d(in_channels=num_hiddens, out_channels=num_hiddens//2,kernel_size=4, stride=2, padding=1)self._conv_trans_2 = nn.ConvTranspose2d(in_channels=num_hiddens//2, out_channels=3,kernel_size=4, stride=2, padding=1)def forward(self, inputs):x = self._conv_1(inputs)x = self._residual_stack(x)x = self._conv_trans_1(x)x = F.relu(x)return self._conv_trans_2(x)class Model(nn.Module):def __init__(self, num_hiddens, num_residual_layers, num_residual_hiddens, num_embeddings, embedding_dim, commitment_cost, decay=0):super(Model, self).__init__()self._encoder = Encoder(3, num_hiddens,num_residual_layers, num_residual_hiddens)self._pre_vq_conv = nn.Conv2d(in_channels = num_hiddens, out_channels = embedding_dim,kernel_size = 1, stride = 1)if decay > 0.0:self._vq_vae = VectorQuantizerEMA(num_embeddings, embedding_dim, commitment_cost, decay)else:self._vq_vae = VectorQuantizer(num_embeddings, embedding_dim,commitment_cost)self._decoder = Decoder(embedding_dim,num_hiddens, num_residual_layers, num_residual_hiddens)def forward(self, x): # x.shape: B(256) C(3) H(32) W(32)z = self._encoder(x)z = self._pre_vq_conv(z)loss, quantized, perplexity, _ = self._vq_vae(z)x_recon = self._decoder(quantized) # decoder解码还原图像 B(256) C(3) H(32) W(32)return loss, x_recon, perplexity

完整代码参考:liujf69/VQ-VAE

3--部分细节解读:

重构损失计算:

        计算源图像和重构图像的MSE损失

vq_loss, data_recon, perplexity = self.model(data)
recon_error = F.mse_loss(data_recon, data) / self.data_variance 

VQ量化损失计算:

        inputs表示Encoder的输出,quantized是Codebook中与 inputs 最接近的向量;

# Loss
e_latent_loss = F.mse_loss(quantized.detach(), inputs)  # 论文中损失函数的第三项
q_latent_loss = F.mse_loss(quantized, inputs.detach()) # 论文中损失函数的第二项
loss = q_latent_loss + self._commitment_cost * e_latent_loss

Decoder的梯度复制到Encoder中:inputs是Encoder的输出,quantized是Decoder的输入;

quantized = inputs + (quantized - inputs).detach() # 梯度复制

这篇关于AIGC笔记--VQVAE模型搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611562

相关文章

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

使用DeepSeek搭建个人知识库(在笔记本电脑上)

《使用DeepSeek搭建个人知识库(在笔记本电脑上)》本文介绍了如何在笔记本电脑上使用DeepSeek和开源工具搭建个人知识库,通过安装DeepSeek和RAGFlow,并使用CherryStudi... 目录部署环境软件清单安装DeepSeek安装Cherry Studio安装RAGFlow设置知识库总

Linux搭建Mysql主从同步的教程

《Linux搭建Mysql主从同步的教程》:本文主要介绍Linux搭建Mysql主从同步的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux搭建mysql主从同步1.启动mysql服务2.修改Mysql主库配置文件/etc/my.cnf3.重启主库my

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo