本文主要是介绍LinkedBlockingQueue,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- LinkedBlockingQueue
- 1.1 LinkedBlockingQueue的底层实现
- 1.2 生产者方法实现原理
- 1.2.1 add方法
- 1.2.2 offer方法
- 1.2.3 offer(time,unit)方法
- 1.2.4 put方法
- 1.3 消费者方法实现原理
- 1.3.1 remove方法
- 1.3.2 poll方法
- 1.3.3 poll(time,unit)方法
- 1.3.4 take方法
LinkedBlockingQueue
1.1 LinkedBlockingQueue的底层实现
查看LinkedBlockingQueue是如何存储数据,并且实现链表结构的。
// Node对象就是存储数据的单位
static class Node<E> {// 存储的数据E item;// 指向下一个数据的指针Node<E> next;// 有参构造Node(E x) { item = x; }
}
查看LinkedBlockingQueue的有参构造
// 可以手动指定LinkedBlockingQueue的长度,如果没有指定,默认为Integer.MAX_VALUE
public LinkedBlockingQueue(int capacity) {if (capacity <= 0) throw new IllegalArgumentException();this.capacity = capacity;// 在初始化时,构建一个item为null的节点,作为head和last// 这种node可以成为哨兵Node,// 如果没有哨兵节点,那么在获取数据时,需要判断head是否为null,才能找next// 如果没有哨兵节点,那么在添加数据时,需要判断last是否为null,才能找nextlast = head = new Node<E>(null);
}
查看LinkedBlockingQueue的其他属性
// 因为是链表,没有想数组的length属性,基于AtomicInteger来记录长度
private final AtomicInteger count = new AtomicInteger();
// 链表的头,取
transient Node<E> head;
// 链表的尾,存
private transient Node<E> last;
// 消费者的锁
private final ReentrantLock takeLock = new ReentrantLock();
// 消费者的挂起操作,以及唤醒用的condition
private final Condition notEmpty = takeLock.newCondition();
// 生产者的锁
private final ReentrantLock putLock = new ReentrantLock();
// 生产者的挂起操作,以及唤醒用的condition
private final Condition notFull = putLock.newCondition();
1.2 生产者方法实现原理
1.2.1 add方法
你懂得,还是走offer方法
public boolean add(E e) {if (offer(e))return true;elsethrow new IllegalStateException("Queue full");
}
1.2.2 offer方法
public boolean offer(E e) {// 非空校验if (e == null) throw new NullPointerException();// 拿到存储数据条数的countfinal AtomicInteger count = this.count;// 查看当前数据条数,是否等于队列限制长度,达到了这个长度,直接返回falseif (count.get() == capacity)return false;// 声明c,作为标记存在int c = -1;// 将存储的数据封装为Node对象Node<E> node = new Node<E>(e);// 获取生产者的锁。final ReentrantLock putLock = this.putLock;// 竞争锁资源putLock.lock();try {// 再次做一个判断,查看是否还有空间if (count.get() < capacity) {// enqueue,扔数据enqueue(node);// 将数据个数 + 1c = count.getAndIncrement();// 拿到count的值 小于 长度限制// 有生产者在基于await挂起,这里添加完数据后,发现还有空间可以存储数据,// 唤醒前面可能已经挂起的生产者// 因为这里生产者和消费者不是互斥的,写操作进行的同时,可能也有消费者在消费数据。if (c + 1 < capacity)// 唤醒生产者notFull.signal();}} finally {// 释放锁资源putLock.unlock();}// 如果c == 0,代表添加数据之前,队列元素个数是0个。// 如果有消费者在队列没有数据的时候,来消费,此时消费者一定会挂起线程if (c == 0)// 唤醒消费者signalNotEmpty();// 添加成功返回true,失败返回-1return c >= 0;
}//================================================
private void enqueue(Node<E> node) {// 将当前Node设置为last的next,并且再将当前Node作为lastlast = last.next = node;
}
//================================================
private void signalNotEmpty() {// 获取读锁final ReentrantLock takeLock = this.takeLock;takeLock.lock();try {// 唤醒。notEmpty.signal();} finally {takeLock.unlock();}
}
sync -> wait / notify
1.2.3 offer(time,unit)方法
public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException {// 非空检验if (e == null) throw new NullPointerException();// 将时间转换为纳秒long nanos = unit.toNanos(timeout);// 标记int c = -1;// 写锁,数据条数final ReentrantLock putLock = this.putLock;final AtomicInteger count = this.count;// 允许中断的加锁方式putLock.lockInterruptibly();try {// 如果元素个数和限制个数一致,直接准备挂起while (count.get() == capacity) {// 挂起的时间是不是已经没了if (nanos <= 0)// 添加失败,返回falsereturn false;// 挂起线程nanos = notFull.awaitNanos(nanos);}// 有空余位置,enqueue添加数据enqueue(new Node<E>(e));// 元素个数 + 1c = count.getAndIncrement();// 当前添加完数据,还有位置可以添加数据,唤醒可能阻塞的生产者if (c + 1 < capacity)notFull.signal();} finally {// 释放锁putLock.unlock();}// 如果之前元素个数是0,唤醒可能等待的消费者if (c == 0)signalNotEmpty();return true;
}
1.2.4 put方法
public void put(E e) throws InterruptedException {if (e == null) throw new NullPointerException();int c = -1;Node<E> node = new Node<E>(e);final ReentrantLock putLock = this.putLock;final AtomicInteger count = this.count;putLock.lockInterruptibly();try {while (count.get() == capacity) {// 一直挂起线程,等待被唤醒notFull.await();}enqueue(node);c = count.getAndIncrement();if (c + 1 < capacity)notFull.signal();} finally {putLock.unlock();}if (c == 0)signalNotEmpty();
}
1.3 消费者方法实现原理
从remove方法开始,查看消费者获取数据的方式
1.3.1 remove方法
public E remove() {E x = poll();if (x != null)return x;elsethrow new NoSuchElementException();
}
1.3.2 poll方法
public E poll() {// 拿到队列数据个数的计数器final AtomicInteger count = this.count;// 当前队列中数据是否0if (count.get() == 0)// 说明队列没数据,直接返回null即可return null;// 声明返回结果E x = null;// 标记int c = -1;// 获取消费者的takeLockfinal ReentrantLock takeLock = this.takeLock;// 加锁takeLock.lock();try {// 基于DCL,确保当前队列中依然有元素if (count.get() > 0) {// 从队列中移除数据x = dequeue();// 将之前的元素个数获取,并--c = count.getAndDecrement();if (c > 1)// 如果依然有数据,继续唤醒await的消费者。notEmpty.signal();}} finally {// 释放锁资源takeLock.unlock();}// 如果之前的元素个数为当前队列的限制长度,// 现在消费者消费了一个数据,多了一个空位可以添加if (c == capacity)// 唤醒阻塞的生产者signalNotFull();return x;
}//================================================private E dequeue() {// 拿到队列的head位置数据Node<E> h = head;// 拿到了head的next,因为这个是哨兵Node,需要拿到的head.next的数据Node<E> first = h.next;// 将之前的哨兵Node.next置位null。help GC。h.next = h; // 将first置位新的headhead = first;// 拿到返回结果first节点的item数据,也就是之前head.next.itemE x = first.item;// 将first数据置位null,作为新的headfirst.item = null;// 返回数据return x;
}//================================================private void signalNotFull() {final ReentrantLock putLock = this.putLock;putLock.lock();try {// 唤醒生产者。notFull.signal();} finally {putLock.unlock();}
}
1.3.3 poll(time,unit)方法
public E poll(long timeout, TimeUnit unit) throws InterruptedException {// 返回结果E x = null;// 标识int c = -1;// 将挂起实现设置为纳秒级别long nanos = unit.toNanos(timeout);// 拿到计数器final AtomicInteger count = this.count;// take锁加锁final ReentrantLock takeLock = this.takeLock;takeLock.lockInterruptibly();try {// 如果没数据,进到whilewhile (count.get() == 0) {if (nanos <= 0)return null;// 挂起当前线程nanos = notEmpty.awaitNanos(nanos);}// 剩下内容,和之前一样。x = dequeue();c = count.getAndDecrement();if (c > 1)notEmpty.signal();} finally {takeLock.unlock();}if (c == capacity)signalNotFull();return x;
}
1.3.4 take方法
public E take() throws InterruptedException {E x;int c = -1;final AtomicInteger count = this.count;final ReentrantLock takeLock = this.takeLock;takeLock.lockInterruptibly();try {// 相比poll(time,unit)方法,这里的出口只有一个,就是中断标记位,抛出异常,否则一直等待while (count.get() == 0) {notEmpty.await();}x = dequeue();c = count.getAndDecrement();if (c > 1)notEmpty.signal();} finally {takeLock.unlock();}if (c == capacity)signalNotFull();return x;
}
这篇关于LinkedBlockingQueue的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!