OceanMind海睿思知信,企业知识应用新主张

2024-01-16 03:52

本文主要是介绍OceanMind海睿思知信,企业知识应用新主张,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

企业知识管理是对组织内部知识的识别、组织和传播的过程,旨在确保在最需要的时间将最需要的知识传递给最需要的人。

在知识经济时代,知识不仅是企业的资产,而且是其核心竞争力的来源。

1

传统知识管理的痛点

传统知识管理方式以知识的文件存储和模糊查询服务为主,存在构建维护成本高、使用低效和应用不智能等痛点。

1、构建维护成本高:

知识存储简单,大量知识以文件存储,非结构化数据处理能力有限。需要专人整理FAQ,构建方式烦琐、速度慢、成本高。

2、使用低效:

人工查找知识相关文档,主要通过模糊搜索技术实现,费时费力,无法解决文档不熟悉或对文档内容进行查询的场景。知识使用仅限于单文档,无法关联知识、总结知识,知识使用场景未充分发挥知识价值。

3、应用不智能:

知识问答能力简单,只能机械相似匹配,无法解决面向真实用户的上下文和推理问题;QA问答对仅可以用于标准问答,无法支撑知识总结、文档生成等场景,扩展性差。

2

大模型为知识管理引入新模式

大模型强大的阅读理解、意图识别、内容生成、推理判断等能力,与企业知识库的构建和应用场景完美契合,能有效解决传统知识管理的痛点,为知识管理流程引入新的模式。

新模式的优势表现在高可用、易构建、强扩展三个方面。

 易构建:基于“知识库+大模型”框架,自动抽取和识别文档内容,搭建知识应用,无需用户手动整理FAQ,流程简单方便。

❖ 高可用:大模型能够理解自然语义,回答用户问题,将知识检索升级为知识问答,知识使用更高效。

❖ 强智能:强大的推理、总结和生成能力,可以帮助企业挖掘表象知识中的隐性知识,为用户提供更个性化和智能化的服务。

3

海睿思知信,助力挖掘企业知识资产价值

1月15日,中新赛克海睿思重磅发布新一代大模型+企业知识库:OceanMind海睿思-知信,一款基于G-RAG框架(RAG即搜索增强式生成,是目前市场基于大模型构建企业知识库的主流框架,能显著提升大模型对企业内部知识问答能力)的企业智能知识库应用。

OceanMind海睿思-知信的产品架构

RAG框架在企业知识库应用落地时,对其问答效果影响较大的主要因素依次为:

  • 接入文档的加工质量,包括清洗、切分、治理等
  • 向量化模型的泛用性、健壮性
  • 用户提问的质量,包括问题的完整性、准确性、清晰性

现有智能知识库对接入文档的主要治理方式为“按固定长度切分+向量化”,存在丢失知识层级关系、召回方案固定以及回答总结性跨章节问题时存在格式混乱影响大模型效果等问题。

海睿思知信在RAG基础上,进一步提出G-RAG(Governance-RAG)框架即治理增强型RAG框架,采用了一套智能文档治理方案:

海睿思知信采用G-RAG(Governance-RAG)框架

  • 引入大模型辅助,保留知识层级且去除超短文本
  • 丰富向量特征,加入总结、父子层级等特征,优化匹配效果
  • 根据不同问题,自适应智能调整召回结果

相对于通用RAG框架知识库,基于G-RAG的海睿思知信在对知识的总结和检索的准确性、完备性上表现出明显的优势。

此外,海睿思知信还引入了RASA框架和自定义FAQ能力,满足用户基于自身业务场景配置简单多轮对话和固定问答答案的场景,面向用户提供更丰富的知识库解决方案。

4

应用实例:基于海睿思知信构建产品AI助手

目前,OceanMind海睿思-知信基于产品配套文档,搭建了一套旨在产品推广的智能产品AI助手,已实现面向用户提供海睿思主营产品、解决方案及成功案例等相关的咨询服务,具体功能包括:

 通用产品问答:支持用户咨询海睿思产品简介、主要产品体系、解决方案及成功案例等信息。

❖ 基础平台助手:基础平台助手支持用户咨询了解基础平台相关产品(包括数据中台、智能数仓、主数据管理、指标管理、OceanDAP数据应用平台等)、解决方案及成功案例等信息。

❖ 业务集市助手:业务集市助手已上线运营风控可视化中的风控分析监管和审计分析监管相关产品白皮书、解决方案及成功案例知识。

❖ 数据工程助手:数据工程助手纳入海睿思多年数据工程建设经验总结形成的知识,支持用户通过问答方式咨询了解数据工程如何赋能企业数字化转型。

基于海睿思知信构建的产品AI助手

OceanMind海睿思-知信已于1月15日正式上线海睿思微信公众号限时免费体验。

现在微信搜索“OceanMind海睿思”,点击菜单栏体验吧!

这篇关于OceanMind海睿思知信,企业知识应用新主张的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611252

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2