matlab|基于VMD-SSA-LSTM的多维时序光伏功率预测

2024-01-16 03:44

本文主要是介绍matlab|基于VMD-SSA-LSTM的多维时序光伏功率预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 主要内容

变分模态分解(VMD)

麻雀搜索算法SSA

长短期记忆网络LSTM

2 部分代码

3 程序结果

4 下载链接


主要内容

之前分享了预测的程序基于LSTM的负荷和可再生能源出力预测【核心部分复现】,该程序预测效果比较好,并且结构比较清晰,但是仍然有同学咨询混合算法的预测,本次分享基于VMD-SSA-LSTM的多维时序光伏功率预测,本程序参考文章《基于VMD-SSA-LSSVM的短期风电预测》和《基于改进鲸鱼优化算法的微网系统能量优化管理》,采用不同方法混合嫁接的方式实现了光伏功率预测,对于预测而言,包括训练和测试,因此,该方法仍然可以用于风电、负荷等方面的预测。

  • 变分模态分解(VMD)

VMD于2014年由Dragomiretskiy和Zosso提出,它的优点在于能根据不同情况确定分解模态个数,并能根据每个 模态的最佳中心频率和有限带宽自适应和匹配,实现固有模
态分量的分解。相比EMD而言,VMD克服了EMD模态混叠和端点效应问题,并降低在复杂度高且非线性强的时间序 列的非平稳性。

  • 麻雀搜索算法SSA

  • 长短期记忆网络LSTM

长短期记忆网络(Long Short Term Memory, LSTM)作为一种特殊的循环神经网络(Recurrent neural network, RNN),主要用于解决长序列训练过程中的梯度消失和梯度爆炸问题。

LSTM预测过程主要包括三个阶段:遗忘阶段,选择记忆阶段和输出阶段。遗忘阶段主要是对上一个节点传过来的信息进行选择性剔除,通过读取上一节点的输出状态和本节点的输出状态,由激活函数决定上一时刻细胞状态信息被遗忘的比例;选择记忆阶段是对输入的信息有选择性的进行筛选,将重要的信息挑选出来输入到当前细胞。选择记忆阶段主要包括两个步骤:第一步是输入层的激活函数决定哪些信息需要更新,层生成一个备选的更新内容,然后接下来是更新细胞状态。根据遗忘阶段的输出状态和备选更新的细胞状态来得到当前细胞的状态;输出阶段将会利用激活函数决定输出细胞状态的比例,然后将经过层处理的细胞状态与输出的细胞状态相乘得到最终的输出结果。

部分代码

% 指标计算
disp('训练集误差指标')
[mae5,rmse5,mape5,error5]=calc_error(T_train5,T_sim5);
fprintf('\n')
​
disp('测试集误差指标')
[mae6,rmse6,mape6,error6]=calc_error(T_test6,T_sim6);
fprintf('\n')
toc
​
%% VMD-SSA-LSTM预测
tic
disp('…………………………………………………………………………………………………………………………')
disp('VMD-SSA-LSTM预测')
disp('…………………………………………………………………………………………………………………………')
​
% SSA参数设置
pop=30; % 种群数量
Max_iter=10; % 最大迭代次数
dim=3; % 优化LSTM的3个参数
lb = [50,50,0.001];%下边界
ub = [300,300,0.01];%上边界
numFeatures=f_;
numResponses=outdim;
fobj = @(x) fun(x,numFeatures,numResponses,X) ;
[Best_pos,Best_score,curve,BestNet]=SSA(pop,Max_iter,lb,ub,dim,fobj);
​
% 绘制进化曲线
figure
plot(curve,'r-','linewidth',3)
xlabel('进化代数')
ylabel('均方根误差RMSE')
legend('最佳适应度')
title('SSA-LSTM的进化收敛曲线')
​
disp('')
disp(['最优隐藏单元数目为   ',num2str(round(Best_pos(1)))]);
disp(['最优最大训练周期为   ',num2str(round(Best_pos(2)))]);
disp(['最优初始学习率为   ',num2str((Best_pos(3)))]);
​
%% 对每个分量建模
for d=1:c
disp(['第',num2str(d),'个分量建模'])
​
X_imf=[X(:,1:end-1) imf(d,:)'];
​
%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(X_imf(i: i + kim - 1,:), 1, kim*or_dim), X_imf(i + kim + zim - 1,:)];
end
​
​
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
​
​
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
​
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
​
%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
​
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
​
%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
end
​
for i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
end
​
% 最佳参数的LSTM预测
layers = [ ...sequenceInputLayer(f_)              % 输入层lstmLayer(round(Best_pos(1)))      % LSTM层reluLayer                           % Relu激活层fullyConnectedLayer(outdim)         % 回归层regressionLayer];
​
​
options = trainingOptions('adam', ...                 % 优化算法Adam'MaxEpochs', round(Best_pos(2)), ...                            % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', Best_pos(3), ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', round(Best_pos(2)*0.9), ...                   % 训练850次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', 0.001, ...          % 正则化参数'ExecutionEnvironment', 'cpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'Plots', 'training-progress');                    % 画出曲线
​
%  训练
net = trainNetwork(vp_train, vt_train, layers, options);
%  预测
t_sim7 = predict(net, vp_train); 
t_sim8 = predict(net, vp_test); 
​
%  数据反归一化
T_sim7_imf = mapminmax('reverse', t_sim7, ps_output);
T_sim8_imf = mapminmax('reverse', t_sim8, ps_output);
​
%  数据格式转换
T_sim7(d,:) = cell2mat(T_sim7_imf);% cell2mat将cell元胞数组转换为普通数组
T_sim8(d,:) = cell2mat(T_sim8_imf);
T_train7(d,:)= T_train;
T_test8(d,:)= T_test;
end
​
% 各分量预测的结果相加
T_sim7=sum(T_sim7);
T_sim8=sum(T_sim8);
T_train7=sum(T_train7);
T_test8=sum(T_test8);
​
% 指标计算
disp('训练集误差指标')
[mae7,rmse7,mape7,error7]=calc_error(T_train7,T_sim7);
fprintf('\n')
​
disp('测试集误差指标')
[mae8,rmse8,mape8,error8]=calc_error(T_test8,T_sim8);
fprintf('\n')
toc
​
%% 四种模型测试集结果绘图对比
​
figure;
plot(T_test2,'k','LineWidth',3);
hold on;
plot(T_sim2,'y','linewidth',3);
plot(T_sim6,'g','linewidth',3);
plot(T_sim8,'r','linewidth',3);
legend('Target','LSTM','VMD-LSTM','VMD-SSA-LSTM');
title('三种模型预测结果对比图');
xlabel('Sample Index');
ylabel('Values');
grid on;
​
figure
plot(error2,'k','linewidth',3);
hold on
plot(error6,'g','linewidth',3);
hold on
plot(error8,'r','linewidth',3);
legend('LSTM','VMD-LSTM','VMD-SSA-LSTM');
title('三种模型预测误差对比图');
grid on;

3 程序结果

4 下载链接

这篇关于matlab|基于VMD-SSA-LSTM的多维时序光伏功率预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611235

相关文章

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

C# double[] 和Matlab数组MWArray[]转换

C# double[] 转换成MWArray[], 直接赋值就行             MWNumericArray[] ma = new MWNumericArray[4];             double[] dT = new double[] { 0 };             double[] dT1 = new double[] { 0,2 };

Science Robotics 首尔国立大学研究团队推出BBEX外骨骼,实现多维力量支持!

重复性举起物体可能会对脊柱和背部肌肉造成损伤,由此引发的腰椎损伤是工业环境等工作场所中一个普遍且令人关注的问题。为了减轻这类伤害,有研究人员已经研发出在举起任务中为工人提供辅助的背部支撑装置。然而,现有的这类装置通常无法在非对称性的举重过程中提供多维度的力量支持。此外,针对整个人体脊柱的设备安全性验证也一直是一个缺失的环节。 据探索前沿科技边界,传递前沿科技成果的X-robot投稿,来自首尔国立

libsvm在matlab中的使用方法

原文地址:libsvm在matlab中的使用方法 作者: lwenqu_8lbsk 前段时间,gyp326曾在论坛里问libsvm如何在matlab中使用,我还奇怪,认为libsvm是C的程序,应该不能。没想到今天又有人问道,难道matlab真的能运行libsvm。我到官方网站看了下,原来,真的提供了matlab的使用接口。 接口下载在: http://www.csie.ntu.edu.

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数_matlab pmsm-CSDN博客

MATLAB层次聚类分析法

转自:http://blog.163.com/lxg_1123@126/blog/static/74841406201022774051963/ 层次聚类是基于距离的聚类方法,MATLAB中通过pdist、linkage、dendrogram、cluster等函数来完成。层次聚类的过程可以分这么几步: (1) 确定对象(实际上就是数据集中的每个数据点)之间的相似性,实际上就是定义一个表征

MATLAB的fix(),floor()和ceil()函数的区别与联系

fix(x),floor(x)和ceil(x)函数都是对x取整,只不过取整方向不同而已。 这里的方向是以x轴作为横坐标来看的,向右就是朝着正轴方向,向左就是朝着负轴方向。 fix(x):向0取整(也可以理解为向中间取整) floor(x):向左取整 ceil(x):向右取整 举例: 4个数:a=3.3、b=3.7、c=-3.3、d=-3.7 fix(a)=3 fl

MATLAB中的eig函数

在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有5种: E=eig(A):求矩阵A的全部特征值,构成向量E。 [V,D]=eig(A):求矩阵A的全部特征值,构成对角阵D,并求A的特征向量构成V的列向量。 [V,D]=eig(A,'nobalance'):与第2种格式类似,但第2种格式中先对A作相似变换后求矩阵A的特征值和特征向量,而格式3直接求矩阵A的特

MATLAB中的diag函数

diag函数功能:矩阵对角元素的提取和创建对角阵 设以下X为方阵,v为向量 1、X = diag(v,k)当v是一个含有n个元素的向量时,返回一个n+abs(k)阶方阵X,向量v在矩阵X中的第k个对角线上,k=0表示主对角线,k>0表示在主对角线上方,k<0表示在主对角线下方。例1: v=[1 2 3]; diag(v, 3) ans =      0     0     0