【FOJ2207 11月月赛C】【DFS栈性质应用 离线处理】以撒的结合 从x到y路径上的第k个点 询问众多

本文主要是介绍【FOJ2207 11月月赛C】【DFS栈性质应用 离线处理】以撒的结合 从x到y路径上的第k个点 询问众多,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 Problem 2207 以撒的结合

Accept: 30    Submit: 98
Time Limit: 1000 mSec    Memory Limit : 32768 KB

 Problem Description

小茗同学最近在认真地准备比赛,所以经常玩以撒的结合。

《以撒的结合》是一款由Edmund McMillen,Florian Himsl 开发,并由Edmund McMillen最早于2011年09月29日发行的一款2D平面角色扮演、动作冒险类的独立游戏。游戏的角色将在有着能够提升能力的道具与特殊技能的半RPG世界中闯荡。

——来自百度百科

小茗同学在打BOSS前,费掉了很多HP。在地图的一些房间里有补充HP的红心,然而小茗同学受到了看不见地图的诅咒。凭借不知道哪里来的记忆,小茗同学记得某个有红心的房间在房间A与房间B的路上的第K个房间里。为了简化问题,我们把地图看成一棵树。小茗同学想知道A到B的第K个房间号为多少,由于小茗同学很累,所以现在这个任务交给你了。

 Input

第一行是一个整数T(T<=10),表示有T组测试数据。

每组数据的第一行为两个整数n m(0<n<=1000,0<m<=n*n),分别表示房间个数和询问次数。

接下来n-1行,每行两个整数u v(0<u、v<=n,且u≠v),表示地图上房间u和房间v有一条路径。

最后是m行,每行三个整数u v k,表示询问房间u到房间v的路径上的第k个房间。

输入数据保证合法,即k不超过u、v的最短距离。

 Output

对于每组数据,首先第一行先输出“Case #x:“ ,其中x是从1开始,表示数据组号,接下来m行,每行输出相应的房间号。

 Sample Input

16 31 22 42 51 33 64 6 41 6 24 5 3

 Sample Output

Case #1:335

 Source

FOJ有奖月赛-2015年11月



【FOJ2207 11月月赛C】【DFS栈性质应用 离线处理】以撒的结合 从x到y路径上的第k个点 询问众多 DFS AC

#include<stdio.h> 
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1010,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int n,m,x,y,k;
int st,top,tim;
vector<int>a[N];
int first[N][N];int id;
struct query
{int k,o,nxt;
}q[N*N];
int e[N],s[N],ans[N*N];
void dfs(int x)
{e[x]=tim;s[++top]=x;for(int z=first[st][x];z;z=q[z].nxt){int k=q[z].k;int o=q[z].o;ans[o]=s[k];}first[st][x]=0;for(int i=a[x].size()-1;~i;--i){int y=a[x][i];if(e[y]!=tim)dfs(y);}--top;
}
int main()
{scanf("%d",&casenum);for(casei=1;casei<=casenum;casei++){scanf("%d%d",&n,&m);if(n>1000||m>n*n)return 0;for(int i=1;i<=n;i++)a[i].clear();for(int i=1;i<n;i++){scanf("%d%d",&x,&y);a[x].push_back(y);a[y].push_back(x);}id=0;for(int i=1;i<=m;i++){scanf("%d%d%d",&x,&y,&k);++id;q[id].k=k;q[id].o=i;q[id].nxt=first[x][y];first[x][y]=id;}for(st=1;st<=n;st++){++tim;dfs(st);}printf("Case #%d:\n",casei);for(int i=1;i<=m;i++)printf("%d\n",ans[i]);}return 0;
}
/*
【trick&&吐槽】
1,不看数据规模就做真的是好蠢好蠢,数据规模也是对做法的提示。
2,dfs上有很多精妙的性质和应用。
3,lca问题我竟然忘记了要把双向边都放进去+_+,然而竟然能过样例,天哪【题意】
给你一棵树,树上有n(1e3)个点。
我们有m个询问,m最大为n*n。
对于每个询问,给你(x,y,k),问你从x到y上的第k个房间的是多少。【类型】
LCA or 树链剖分?NO!正解是栈性质dfs!【分析】
这题我一看到是树结构,立马想到树链剖分或者是LCA这样O(mlogn)的做法。
然而m实在是太大了,这个做法只会造成TLE >_<
正解是怎么做呢?DFS!
我们用vector存下所有询问(x,y,k)
[哇哇哇,vector太大也会导致TLE!换成链表模式就AC了>_<]
然后从每个点开始dfs,用栈存下所有点。
如果遇到(x,y,k)的询问,我们就直接记录答案为目前从x开始dfs的栈中第k个点。
这样就可以AC喽~【时间复杂度&&优化】
O(n^2)*/

【FOJ2207 11月月赛C】【DFS栈性质应用 离线处理】以撒的结合 从x到y路径上的第k个点 询问众多 LCA TLE

#include<stdio.h> 
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1010,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int n,m,x,y,k;
vector<int>a[N];
int d[N];
int f[N][12];
int b[12];
void dfs(int x)
{for(int i=a[x].size()-1;~i;--i){int y=a[x][i];if(y==f[x][0])continue;f[y][0]=x;d[y]=d[x]+1;dfs(y);}
}
void LCAinit()
{for(int j=1;b[j]<n;j++){for(int i=1;i<=n;i++)if(~f[i][j-1]){f[i][j]=f[f[i][j-1]][j-1];}}
}
int DX,DY;
int LCA(int x,int y)
{int i,j;if(d[x]<d[y])swap(x,y);for(i=0;b[i]<=d[x];i++);i--;for(j=i;d[x]>d[y];j--)if(d[x]-b[j]>=d[y])x=f[x][j];if(x==y)return x;for(j=i;f[x][0]!=f[y][0];j--)if(f[x][j]!=f[y][j]){x=f[x][j];y=f[y][j];}return f[x][0];
}
int find(int x,int dis)
{int i;for(i=0;b[i]<=dis;i++);i--;while(dis){if(dis>=b[i]){x=f[x][i];dis-=b[i];}}return x;
}
int main()
{for(int i=0;i<=10;i++)b[i]=1<<i;scanf("%d",&casenum);for(casei=1;casei<=casenum;casei++){scanf("%d%d",&n,&m);for(int i=1;i<=n;i++)a[i].clear();for(int i=1;i<n;i++){scanf("%d%d",&x,&y);a[x].push_back(y);a[y].push_back(x);}MS(f,-1);f[1][0]=0;d[1]=0;dfs(1);LCAinit();printf("Case #%d:\n",casei);while(m--){scanf("%d%d%d",&x,&y,&k);k--;int lca=LCA(x,y);int dx=d[x]-d[lca];int dy=d[y]-d[lca];int ans;if(dx>=k)ans=find(x,k);else{k-=dx;ans=find(y,dy-k);}printf("%d\n",ans);}}return 0;
}
/*
【trick&&吐槽】
1,不看数据规模就做真的是好蠢好蠢,数据规模也是对做法的提示。
2,dfs上有很多精妙的性质和应用。
3,lca问题我竟然忘记了要把双向边都放进去+_+,然而竟然能过样例,天哪【题意】
给你一棵树,树上有n(1e3)个点。
我们有m个询问,m最大为n*n。
对于每个询问,给你(x,y,k),问你从x到y上的第k个房间的是多少。【类型】
LCA or 树链剖分?NO!正解是栈性质dfs!【分析】
这题我一看到是树结构,立马想到树链剖分或者是LCA这样O(mlogn)的做法。
然而m实在是太大了,这个做法只会造成TLE >_<
正解是怎么做呢?DFS!
我们用vector存下所有询问(x,y,k)
[哇哇哇,vector太大也会导致TLE!换成链表模式就AC了>_<]
然后从每个点开始dfs,用栈存下所有点。
如果遇到(x,y,k)的询问,我们就直接记录答案为目前从x开始dfs的栈中第k个点。
这样就可以AC喽~【时间复杂度&&优化】
O(n^2)*/


这篇关于【FOJ2207 11月月赛C】【DFS栈性质应用 离线处理】以撒的结合 从x到y路径上的第k个点 询问众多的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610501

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6