【FOJ2207 11月月赛C】【DFS栈性质应用 离线处理】以撒的结合 从x到y路径上的第k个点 询问众多

本文主要是介绍【FOJ2207 11月月赛C】【DFS栈性质应用 离线处理】以撒的结合 从x到y路径上的第k个点 询问众多,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 Problem 2207 以撒的结合

Accept: 30    Submit: 98
Time Limit: 1000 mSec    Memory Limit : 32768 KB

 Problem Description

小茗同学最近在认真地准备比赛,所以经常玩以撒的结合。

《以撒的结合》是一款由Edmund McMillen,Florian Himsl 开发,并由Edmund McMillen最早于2011年09月29日发行的一款2D平面角色扮演、动作冒险类的独立游戏。游戏的角色将在有着能够提升能力的道具与特殊技能的半RPG世界中闯荡。

——来自百度百科

小茗同学在打BOSS前,费掉了很多HP。在地图的一些房间里有补充HP的红心,然而小茗同学受到了看不见地图的诅咒。凭借不知道哪里来的记忆,小茗同学记得某个有红心的房间在房间A与房间B的路上的第K个房间里。为了简化问题,我们把地图看成一棵树。小茗同学想知道A到B的第K个房间号为多少,由于小茗同学很累,所以现在这个任务交给你了。

 Input

第一行是一个整数T(T<=10),表示有T组测试数据。

每组数据的第一行为两个整数n m(0<n<=1000,0<m<=n*n),分别表示房间个数和询问次数。

接下来n-1行,每行两个整数u v(0<u、v<=n,且u≠v),表示地图上房间u和房间v有一条路径。

最后是m行,每行三个整数u v k,表示询问房间u到房间v的路径上的第k个房间。

输入数据保证合法,即k不超过u、v的最短距离。

 Output

对于每组数据,首先第一行先输出“Case #x:“ ,其中x是从1开始,表示数据组号,接下来m行,每行输出相应的房间号。

 Sample Input

16 31 22 42 51 33 64 6 41 6 24 5 3

 Sample Output

Case #1:335

 Source

FOJ有奖月赛-2015年11月



【FOJ2207 11月月赛C】【DFS栈性质应用 离线处理】以撒的结合 从x到y路径上的第k个点 询问众多 DFS AC

#include<stdio.h> 
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1010,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int n,m,x,y,k;
int st,top,tim;
vector<int>a[N];
int first[N][N];int id;
struct query
{int k,o,nxt;
}q[N*N];
int e[N],s[N],ans[N*N];
void dfs(int x)
{e[x]=tim;s[++top]=x;for(int z=first[st][x];z;z=q[z].nxt){int k=q[z].k;int o=q[z].o;ans[o]=s[k];}first[st][x]=0;for(int i=a[x].size()-1;~i;--i){int y=a[x][i];if(e[y]!=tim)dfs(y);}--top;
}
int main()
{scanf("%d",&casenum);for(casei=1;casei<=casenum;casei++){scanf("%d%d",&n,&m);if(n>1000||m>n*n)return 0;for(int i=1;i<=n;i++)a[i].clear();for(int i=1;i<n;i++){scanf("%d%d",&x,&y);a[x].push_back(y);a[y].push_back(x);}id=0;for(int i=1;i<=m;i++){scanf("%d%d%d",&x,&y,&k);++id;q[id].k=k;q[id].o=i;q[id].nxt=first[x][y];first[x][y]=id;}for(st=1;st<=n;st++){++tim;dfs(st);}printf("Case #%d:\n",casei);for(int i=1;i<=m;i++)printf("%d\n",ans[i]);}return 0;
}
/*
【trick&&吐槽】
1,不看数据规模就做真的是好蠢好蠢,数据规模也是对做法的提示。
2,dfs上有很多精妙的性质和应用。
3,lca问题我竟然忘记了要把双向边都放进去+_+,然而竟然能过样例,天哪【题意】
给你一棵树,树上有n(1e3)个点。
我们有m个询问,m最大为n*n。
对于每个询问,给你(x,y,k),问你从x到y上的第k个房间的是多少。【类型】
LCA or 树链剖分?NO!正解是栈性质dfs!【分析】
这题我一看到是树结构,立马想到树链剖分或者是LCA这样O(mlogn)的做法。
然而m实在是太大了,这个做法只会造成TLE >_<
正解是怎么做呢?DFS!
我们用vector存下所有询问(x,y,k)
[哇哇哇,vector太大也会导致TLE!换成链表模式就AC了>_<]
然后从每个点开始dfs,用栈存下所有点。
如果遇到(x,y,k)的询问,我们就直接记录答案为目前从x开始dfs的栈中第k个点。
这样就可以AC喽~【时间复杂度&&优化】
O(n^2)*/

【FOJ2207 11月月赛C】【DFS栈性质应用 离线处理】以撒的结合 从x到y路径上的第k个点 询问众多 LCA TLE

#include<stdio.h> 
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1010,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int n,m,x,y,k;
vector<int>a[N];
int d[N];
int f[N][12];
int b[12];
void dfs(int x)
{for(int i=a[x].size()-1;~i;--i){int y=a[x][i];if(y==f[x][0])continue;f[y][0]=x;d[y]=d[x]+1;dfs(y);}
}
void LCAinit()
{for(int j=1;b[j]<n;j++){for(int i=1;i<=n;i++)if(~f[i][j-1]){f[i][j]=f[f[i][j-1]][j-1];}}
}
int DX,DY;
int LCA(int x,int y)
{int i,j;if(d[x]<d[y])swap(x,y);for(i=0;b[i]<=d[x];i++);i--;for(j=i;d[x]>d[y];j--)if(d[x]-b[j]>=d[y])x=f[x][j];if(x==y)return x;for(j=i;f[x][0]!=f[y][0];j--)if(f[x][j]!=f[y][j]){x=f[x][j];y=f[y][j];}return f[x][0];
}
int find(int x,int dis)
{int i;for(i=0;b[i]<=dis;i++);i--;while(dis){if(dis>=b[i]){x=f[x][i];dis-=b[i];}}return x;
}
int main()
{for(int i=0;i<=10;i++)b[i]=1<<i;scanf("%d",&casenum);for(casei=1;casei<=casenum;casei++){scanf("%d%d",&n,&m);for(int i=1;i<=n;i++)a[i].clear();for(int i=1;i<n;i++){scanf("%d%d",&x,&y);a[x].push_back(y);a[y].push_back(x);}MS(f,-1);f[1][0]=0;d[1]=0;dfs(1);LCAinit();printf("Case #%d:\n",casei);while(m--){scanf("%d%d%d",&x,&y,&k);k--;int lca=LCA(x,y);int dx=d[x]-d[lca];int dy=d[y]-d[lca];int ans;if(dx>=k)ans=find(x,k);else{k-=dx;ans=find(y,dy-k);}printf("%d\n",ans);}}return 0;
}
/*
【trick&&吐槽】
1,不看数据规模就做真的是好蠢好蠢,数据规模也是对做法的提示。
2,dfs上有很多精妙的性质和应用。
3,lca问题我竟然忘记了要把双向边都放进去+_+,然而竟然能过样例,天哪【题意】
给你一棵树,树上有n(1e3)个点。
我们有m个询问,m最大为n*n。
对于每个询问,给你(x,y,k),问你从x到y上的第k个房间的是多少。【类型】
LCA or 树链剖分?NO!正解是栈性质dfs!【分析】
这题我一看到是树结构,立马想到树链剖分或者是LCA这样O(mlogn)的做法。
然而m实在是太大了,这个做法只会造成TLE >_<
正解是怎么做呢?DFS!
我们用vector存下所有询问(x,y,k)
[哇哇哇,vector太大也会导致TLE!换成链表模式就AC了>_<]
然后从每个点开始dfs,用栈存下所有点。
如果遇到(x,y,k)的询问,我们就直接记录答案为目前从x开始dfs的栈中第k个点。
这样就可以AC喽~【时间复杂度&&优化】
O(n^2)*/


这篇关于【FOJ2207 11月月赛C】【DFS栈性质应用 离线处理】以撒的结合 从x到y路径上的第k个点 询问众多的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610501

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓