【Intel Code Challenge Elimination Round (Div1 + Div2, combined) C】【正难则反并查集】n数按照次序删除每次删除后最大联通块之和

本文主要是介绍【Intel Code Challenge Elimination Round (Div1 + Div2, combined) C】【正难则反并查集】n数按照次序删除每次删除后最大联通块之和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C. Destroying Array
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given an array consisting of n non-negative integers a1, a2, ..., an.

You are going to destroy integers in the array one by one. Thus, you are given the permutation of integers from 1 to n defining the order elements of the array are destroyed.

After each element is destroyed you have to find out the segment of the array, such that it contains no destroyed elements and the sum of its elements is maximum possible. The sum of elements in the empty segment is considered to be 0.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 100 000) — the length of the array.

The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109).

The third line contains a permutation of integers from 1 to n — the order used to destroy elements.

Output

Print n lines. The i-th line should contain a single integer — the maximum possible sum of elements on the segment containing no destroyed elements, after first i operations are performed.

Examples
input
4
1 3 2 5
3 4 1 2
output
5
4
3
0
input
5
1 2 3 4 5
4 2 3 5 1
output
6
5
5
1
0
input
8
5 5 4 4 6 6 5 5
5 2 8 7 1 3 4 6
output
18
16
11
8
8
6
6
0
Note

Consider the first sample:

  1. Third element is destroyed. Array is now 1 3  *  5. Segment with maximum sum 5 consists of one integer 5.
  2. Fourth element is destroyed. Array is now 1 3  *   * . Segment with maximum sum 4 consists of two integers 1 3.
  3. First element is destroyed. Array is now  *  3  *   * . Segment with maximum sum 3 consists of one integer 3.
  4. Last element is destroyed. At this moment there are no valid nonempty segments left in this array, so the answer is equal to 0.

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int n;
int a[N];
int p[N];
int f[N];
LL sum[N];
LL ans[N];
int find(int x)
{return f[x] == x ? x : f[x] = find(f[x]);
}
int main()
{while (~scanf("%d", &n)){for (int i = 1; i <= n; ++i)scanf("%d", &a[i]), f[i] = 0;for (int i = 1; i <= n; ++i)scanf("%d", &p[i]);LL ANS = 0;ans[n] = 0;for (int i = n; i >= 1; --i){int x = p[i];f[x] = x;sum[x] = a[x];if (x > 1 && f[x - 1]){int y = find(x - 1);if (x != y){sum[x] += sum[y];f[y] = x;}}if (x < n && f[x + 1]){int y = find(x + 1);if (x != y){sum[x] += sum[y];f[y] = x;}}gmax(ANS, sum[x]);ans[i - 1] = ANS;}for (int i = 1; i <= n; ++i)printf("%lld\n", ans[i]);}return 0;
}
/*
【题意】
给你n个数,我们按照一个全排列的次序全部删除,问你在每次做完删除操作之后,剩余的和最大的联通块的和是多少
定义联通块为没有删除的一段连续的数【类型】
并查集 正难则反【分析】
这道题是正难则反并查集的典型应用
倒着合并就可以了【时间复杂度&&优化】
O(n)*/


这篇关于【Intel Code Challenge Elimination Round (Div1 + Div2, combined) C】【正难则反并查集】n数按照次序删除每次删除后最大联通块之和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610331

相关文章

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

SpringBoot项目删除Bean或者不加载Bean的问题解决

《SpringBoot项目删除Bean或者不加载Bean的问题解决》文章介绍了在SpringBoot项目中如何使用@ComponentScan注解和自定义过滤器实现不加载某些Bean的方法,本文通过实... 使用@ComponentScan注解中的@ComponentScan.Filter标记不加载。@C

MySQL中删除重复数据SQL的三种写法

《MySQL中删除重复数据SQL的三种写法》:本文主要介绍MySQL中删除重复数据SQL的三种写法,文中通过代码示例讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下... 目录方法一:使用 left join + 子查询删除重复数据(推荐)方法二:创建临时表(需分多步执行,逻辑清晰,但会

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

Python按条件批量删除TXT文件行工具

《Python按条件批量删除TXT文件行工具》这篇文章主要为大家详细介绍了Python如何实现按条件批量删除TXT文件中行的工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.简介2.运行效果3.相关源码1.简介一个由python编写android的可根据TXT文件按条件批

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

poj 1182 并查集 食物链类

题意: 有n只动物,分别编号1....n。所有动物都属于A,B,C中的一种,已知A吃B,B吃C,C吃A。 按顺序给出下面两种共K条信息: 1. x 和 y 属于同一类。 2. x 吃 y 。 然而这些信息可能会出错,有可能有的信息和之前给出的信息矛盾,也有的信息可能给出的 x 和 y 不在n的范围内。 求k条信息中有多少条是不正确的。 解析: 对于每只动物,创建3个元素 i

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c