快慢指针-Floyd判圈算法

2024-01-15 20:52

本文主要是介绍快慢指针-Floyd判圈算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对于环形链表是否存在环的做法,普通算法可以通过额外Hash数组来存储链表元素,直到Hash数组中出现重复元素。时间复杂度O(n),空间复杂度O(n)

Floyd判圈算法通过利用快慢指针的移动来实现,时间复杂度O(n),空间复杂度O(1)

一、环形链表

这个不需要过过多的介绍,环形链表就是存在一个节点被2个节点指向,形成了一个闭环。

需要注意的是,一个节点可以被两个节点指向,但是不可能一个节点指向多个节点,所以不会出现一下情况:

二、算法结论

存在不同速度的快慢指针(slow & fast),慢指针每周期移动1个节点,快指针每周期移动2节点

1、因为快指针比慢指针速度快,所以如果链表中不存在环时,快慢指针永远不得相遇,直到Fast移动到尾部结束,时间复杂度O(n),因为Fast指针速度是Slow指针两倍,所以当Fast指针到达尾部时,Slow指针走了一半,即S指向中间值。

2、如果存在环,Fast先进入到环内,并开始做绕环移动,Slow和Fast在环内经过n次移动后,必然会相遇

3、快慢指针在环内第一次相遇后,将其中一个指针重置到head位,当他们再次相遇后指向的节点为入环节点

三、算法证明

1、每次循环,为什么快慢指针一定要快1步,是否可以前进更多?(Slow前进1格,Fast前进2格)

这是因为快慢指针如果相距更多的步,可能存在环内永远不会相遇的情况,比如慢指针前进1格,快指针前进4格时,如下

因为环节点数据量为3个,所以对于Fast指针来说每次循环等于前进1格,而慢指针也前进1格,所以两者永远不能相遇。

因此想要快慢指针在环内能必然或者更快的相遇,那需要他们每次循环后,距离-1,直到相遇。F指针比S指针快1步,可以更好的保障其在环境一定能够相遇,或者更早的相遇。

2、为什么快慢指针在环内一定会相遇?

假如快慢指针此时都在环内,他们相距距离为N,因为环是无限循环的,假设次数S指针在F指针前,即S-F=N

 因为F指针比S指针快1步,所以进行1次移动后:

S+1-(F+2) = S-F -1 = N-1 ,即执行一次后两者的距离-1,因此在n次循环后,必然会出现相遇。

此时如果将设F指针速度为vf, 慢指针速度为vs,同时要确保一定相遇满足N-1,则:

S+vs -(F +vf) = N-1   

  --> S-F + vs-vf = n-1  

  --> vs - vf = 1,即相差1步

同时N为两者的距离,肯定是小于环的长度的,所以在S指针进环后,第1圈内一定会相遇

结论:

首先F指针每次比S指针快1步,可以确保在环中一定可以相遇,如果快更多,则不能保证或需要更多的循环。

3、入口节点结论证明

上面已经证明了F\S在环中一定是能够相遇的,且S进环后,第一圈一定会相遇,那么假设F\S

在P点相遇

因为F比S快1步,所以F在环内已经跑了1圈了

因此F行驶距离:AC + 2CP + PC

S行驶距离:AC + CP

因为F速度为S的两倍,因此 AC + 2CP + PC = 2(AC + CP)得出 AC = PC

即:在第一次相遇时,PC和AC的长度是一样的,因此此时将任意节点重置到A位,并两者均以相同的速度前进,必然会在C点相遇,因此C点为入口点。

4、原理理解了算法就比较简单了

/*** Definition for singly-linked list.* class ListNode {*     int val;*     ListNode next;*     ListNode(int x) {*         val = x;*         next = null;*     }* }*/
public class Solution {public int hasCycle(ListNode head) {if(head == null){return -1;}ListNode fast = head;ListNode slow = head;// 第一次相遇while(true){if(slow.next == null  || fast.next == null ){return false;}fast = fast.next.next;slow = slow.next;if(fast == slow){break;}} // 第二次相遇 while(fast!=slow){fast = fast.next;slow = slow.next;if(fast == slow){return fast ;}} }
}

这篇关于快慢指针-Floyd判圈算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610179

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

解决java.lang.NullPointerException问题(空指针异常)

《解决java.lang.NullPointerException问题(空指针异常)》本文详细介绍了Java中的NullPointerException异常及其常见原因,包括对象引用为null、数组元... 目录Java.lang.NullPointerException(空指针异常)NullPointer

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个