CF1446B Catching Cheaters 题解 DP

2024-01-15 11:12

本文主要是介绍CF1446B Catching Cheaters 题解 DP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Catching Cheaters

传送门

题面翻译

给我们两个字符串,让我们从中选出两个字串,算出它们的最大公共子序列长度。然后将它乘 4 4 4在减去两个字串的长度。问你这个数最大是多少。

题目描述

You are given two strings A A A and B B B representing essays of two students who are suspected cheaters. For any two strings C C C , D D D we define their similarity score S ( C , D ) S(C,D) S(C,D) as 4 ⋅ L C S ( C , D ) − ∣ C ∣ − ∣ D ∣ 4\cdot LCS(C,D) - |C| - |D| 4LCS(C,D)CD , where L C S ( C , D ) LCS(C,D) LCS(C,D) denotes the length of the Longest Common Subsequence of strings C C C and D D D .

You believe that only some part of the essays could have been copied, therefore you’re interested in their substrings.

Calculate the maximal similarity score over all pairs of substrings. More formally, output maximal S ( C , D ) S(C, D) S(C,D) over all pairs ( C , D ) (C, D) (C,D) , where C C C is some substring of A A A , and $ D $ is some substring of B B B .

If X X X is a string, ∣ X ∣ |X| X denotes its length.

A string a a a is a substring of a string b b b if a a a can be obtained from b b b by deletion of several (possibly, zero or all) characters from the beginning and several (possibly, zero or all) characters from the end.

A string a a a is a subsequence of a string b b b if a a a can be obtained from b b b by deletion of several (possibly, zero or all) characters.

Pay attention to the difference between the substring and subsequence, as they both appear in the problem statement.

You may wish to read the Wikipedia page about the Longest Common Subsequence problem.

输入格式

The first line contains two positive integers n n n and m m m ( 1 ≤ n , m ≤ 5000 1 \leq n, m \leq 5000 1n,m5000 ) — lengths of the two strings A A A and B B B .

The second line contains a string consisting of n n n lowercase Latin letters — string A A A .

The third line contains a string consisting of m m m lowercase Latin letters — string B B B .

输出格式

Output maximal S ( C , D ) S(C, D) S(C,D) over all pairs ( C , D ) (C, D) (C,D) , where C C C is some substring of A A A , and D D D is some substring of B B B .

样例 #1

样例输入 #1

4 5
abba
babab

样例输出 #1

5

样例 #2

样例输入 #2

8 10
bbbbabab
bbbabaaaaa

样例输出 #2

12

样例 #3

样例输入 #3

7 7
uiibwws
qhtkxcn

样例输出 #3

0

提示

For the first case:

abb from the first string and abab from the second string have LCS equal to abb.

The result is S ( a b b , a b a b ) = ( 4 ⋅ ∣ a b b ∣ ) − ∣ a b b ∣ − ∣ a b a b ∣ = 4 ⋅ 3 − 3 − 4 = 5 S(abb, abab) = (4 \cdot |abb|) - |abb| - |abab| = 4 \cdot 3 - 3 - 4 = 5 S(abb,abab)=(4abb)abbabab=4334=5 .

以上来自洛谷 以上来自洛谷 以上来自洛谷

解题思路

首先,暴力肯定过不了。

考虑DP。设 f i , j f_{i,j} fi,j 表示以 a i , b i a_i,b_i ai,bi 为两字串的末位的相似值(相似值计算: 4 × L C S ( A , B ) − ∣ A ∣ − ∣ B ∣ 4 \times LCS(A,B)-|A|-|B| 4×LCS(A,B)AB)。当 i + 1 i+1 i+1 j + 1 j+1 j+1 时,对 L C S ( A , B ) LCS(A,B) LCS(A,B) 无贡献,而对 ∣ A ∣ |A| A ∣ B ∣ |B| B 贡献为 1 1 1,所以对相似值贡献为 ( 4 × L C S ( A ′ , B ) − ∣ A ′ ∣ − ∣ B ∣ ) − ( 4 × L C S ( ∣ A ∣ , ∣ B ∣ ) − ∣ A ∣ − ∣ B ∣ ) = ( 4 × L C S ( A , B ) − ( ∣ A ∣ + 1 ) − ∣ B ∣ ) − ( 4 × L C S ( A , B ) − ∣ A ∣ − ∣ ∣ B ) = 4 ∗ L C S ( A , B ) − ∣ A ∣ − 1 − ∣ B ∣ − 4 × L C S ( A , B ) + ∣ A ∣ + ∣ B ∣ = − 1 (4\times LCS(A',B)-|A'|-|B|)-(4\times LCS(|A|,|B|)-|A|-|B|)=(4\times LCS(A,B)-(|A|+1)-|B|)-(4\times LCS(A,B)-|A|-||B)=4*LCS(A,B)-|A|-1-|B|-4\times LCS(A,B)+|A|+|B|=-1 (4×LCS(A,B)AB)(4×LCS(A,B)AB)=(4×LCS(A,B)(A+1)B)(4×LCS(A,B)A∣∣B)=4LCS(A,B)A1B4×LCS(A,B)+A+B=1,则有 f i , j = max ⁡ ( f i , j , max ⁡ ( f i − 1 , j , f i , j − 1 ) ) f_{i,j}=\max(f_{i,j},\max(f_{i-1,j},f_{i,j-1})) fi,j=max(fi,j,max(fi1,j,fi,j1))。当 i + 1 i+1 i+1 j + 1 j+1 j+1 的同时满足 a i + 1 = b j + 1 a_{i+1}=b_{j+1} ai+1=bj+1,则对 L C S ( A , B ) LCS(A,B) LCS(A,B) 的贡献为 4 4 4,对 ∣ A ∣ + ∣ B ∣ |A|+|B| A+B 的贡献为 2 2 2,所以对相似值的贡献为 ( 4 × L C S ( A ′ , B ′ ) − ∣ A ′ ∣ − ∣ B ′ ∣ ) − ( 4 × L C S ( A , B ) − ∣ A ∣ − ∣ B ∣ ) = ( 4 × ( L C S ( A , B ) + 1 ) − ( ∣ A ∣ + 1 ) − ( ∣ B ∣ + 1 ) ) − ( 4 × L C S ( A , B ) − ∣ A ∣ − ∣ B ∣ ) = ( 4 × L C S ( A , B ) + 4 − ∣ A ∣ − 1 − ∣ B ∣ − 1 ) − ( 4 × L C S ( A , B ) − ∣ A ∣ − ∣ B ∣ ) = 4 × L C S ( A , B ) + 4 − ∣ A ∣ − 1 − ∣ B ∣ − 1 − 4 × L C S ( A , B ) + ∣ A ∣ + ∣ B ∣ = 2 (4\times LCS(A',B')-|A'|-|B'|)-(4\times LCS(A,B)-|A|-|B|)=(4\times (LCS(A,B)+1)-(|A|+1)-(|B|+1))-(4\times LCS(A,B)-|A|-|B|)=(4\times LCS(A,B)+4-|A|-1-|B|-1)-(4\times LCS(A,B)-|A|-|B|)=4\times LCS(A,B)+4-|A|-1-|B|-1-4\times LCS(A,B)+|A|+|B|=2 (4×LCS(A,B)AB)(4×LCS(A,B)AB)=(4×(LCS(A,B)+1)(A+1)(B+1))(4×LCS(A,B)AB)=(4×LCS(A,B)+4A1B1)(4×LCS(A,B)AB)=4×LCS(A,B)+4A1B14×LCS(A,B)+A+B=2,由此可得此时 f i , j = f i − 1 , j − 1 + 2 f_{i,j}=f_{i-1,j-1}+2 fi,j=fi1,j1+2

AC Code

#include <bits/stdc++.h>
using namespace std;
#define int long long
const int Maxn = 5000 + 5;
int n, m;
char s1[Maxn], s2[Maxn];
int f[Maxn][Maxn];
int ans;
inline void work() {cin >> n >> m >> s1 + 1 >> s2 + 1;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {f[i][j] = max(f[i][j], max(f[i][j - 1], f[i - 1][j]) - 1);if (s1[i] == s2[j]) {f[i][j] = f[i - 1][j - 1] + 2;}ans = max(ans, f[i][j]);}}cout << ans << endl;
}
signed main() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);work();return 0;
}

还不会?看这里。

这篇关于CF1446B Catching Cheaters 题解 DP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/608695

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1233 n个硬币连续m个正面个数(dp)

题面: Coins Problem Description: Duoxida buys a bottle of MaiDong from a vending machine and the machine give her n coins back. She places them in a line randomly showing head face or tail face o

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int