DataWhale-202110 树模型与集成学习(第一次)

2024-01-15 08:18

本文主要是介绍DataWhale-202110 树模型与集成学习(第一次),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DataWhale-202110 树模型与集成学习

  • 信息论的基础
    • 节点纯度
      • 不确定性函数 H ( P ) H(P) H(P)
    • 决策树分裂
    • 信息增益
  • 分类树的节点分裂
    • 深度优先增长于最佳增益增长
  • CART树
    • 均方误差(熵)平均绝对误差(条件熵)
  • 决策树剪枝
  • 知识回顾
    • 第一题
    • 第二题
    • 第三题
    • 第四题
      • 处理连续值(转发)
      • 处理缺失值
    • 第五题
    • 第六题

信息论的基础

正如文档里面所说的一样,树具有一定的天然分支结构,在机器学习中有分类与回归两大问题,而分类问题中,树的分支结构起到一定的关键作用,首先引入的是节点纯度的概念

节点纯度

节点纯度反映的是节点样本标签的不确定性,当一个节点纯度较低的时候,说明分类的不确定性较高,而节点纯度较高的时候,代表着我们能够把握这个节点的具体信息,确定性较高

不确定性函数 H ( P ) H(P) H(P)

H ( p 1 , . . . , p n ) = − C ∑ i = 1 n p i log ⁡ p i H(p_1,...,p_n)=-C\sum_{i=1}^np_i\log p_i H(p1,...,pn)=Ci=1npilogpi
其中满足信息熵条件是:

  1. H H H关于 p i p_i pi是连续函数。
  2. p 1 = . . . = p n p_1=...=p_n p1=...=pn,则 H H H关于 n n n单调递增。
  3. 若将某一个 p i p_i pi拆分为 p i 1 p_{i1} pi1 p i 2 p_{i2} pi2,即 p i 1 + p i 2 = p i p_{i1}+p_{i2}=p_i pi1+pi2=pi,则
    H ( p 1 , . . . , p i − 1 , p i + 1 , . . . , p n , p i 1 , p i 2 ) = H ( p 1 , . . . , p n ) + p i H ( p i 1 p i , p i 2 p i ) H(p_1,...,p_{i-1},p_{i+1},...,p_n,p_{i1},p_{i2})=H(p_1,...,p_n)+p_iH(\frac{p_{i1}}{p_i}, \frac{p_{i2}}{p_i}) H(p1,...,pi1,pi+1,...,pn,pi1,pi2)=H(p1,...,pn)+piH(pipi1,pipi2)

对于定义在有限状态集合 { y 1 , . . . , y K } \{y_1,...,y_K\} {y1,...,yK}上的离散变量而言,对应信息熵的最大值在离散均匀分布时取到,最小值在单点分布时取到。此时,离散信息熵为
H ( Y ) = − ∑ k = 1 K p ( y k ) log ⁡ 2 p ( y k ) H(Y)=-\sum_{k=1}^K p(y_k)\log_2p(y_k) H(Y)

这篇关于DataWhale-202110 树模型与集成学习(第一次)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/608238

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

Spring Boot 集成 Quartz 使用Cron 表达式实现定时任务

《SpringBoot集成Quartz使用Cron表达式实现定时任务》本文介绍了如何在SpringBoot项目中集成Quartz并使用Cron表达式进行任务调度,通过添加Quartz依赖、创... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring