LLM漫谈(三)| 使用Chainlit和LangChain构建文档问答的LLM应用程序

本文主要是介绍LLM漫谈(三)| 使用Chainlit和LangChain构建文档问答的LLM应用程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Chainlit介绍

     Chainlit是一个开源Python包,旨在彻底改变构建和共享语言模型(LM)应用程序的方式。Chainlit可以创建用户界面(UI),类似于由OpenAI开发的ChatGPT用户界面,Chainlit可以开发类似streamlit的web界面。

1.1 Chainlit的主要特点

  • 可视化中间步骤:Chainlit可以可视化大语言模型管道中的每个步骤;
  • Chainlit与Python代码轻松集成,可以快速释放LM应用程序的潜力;
  • 快速响应的UI开发:使用Chainlit可以利用其直观的框架来设计和实现类似于ChatGPT的迷人UI。

1.2 Chainlit装饰器功能

on_message

      与框架的装饰器,用于对来自UI的消息作出反应。每次收到新消息时,都会调用装饰函数。

on_chat_start

       Decorator对用户websocket连接事件作出反应。

1.3 概念

User Session

      user_session是一个存储用户会话数据的字典,idenv键分别保持会话id和环境变量。用户会话其他数据存储在其他key中。

Streaming

Chainlit支持两种类型的流:

Python Streaming(https://docs.chainlit.io/concepts/streaming/python)

Langchain Streaming(https://docs.chainlit.io/concepts/streaming/langchain)

二、实施步骤

1.开始上传PDF格式文件,确保其正确提交;

2.随后,使用PyPDF2从上传的PDF文档中提取文本内容;

3.利用OpenAIEmbeddings将提取的文本内容转换为矢量化嵌入;

4.将这些矢量化嵌入保存在指定的向量库中,比如Chromadb;

5.当用户查询时,通过应用OpenAIEmbeddings将查询转换为相应的矢量嵌入,将查询的语义结构对齐到矢量化域中;

6.调用查询的矢量化嵌入有效地检索上下文相关的文档和文档上下文的相关元数据;

7.将检索到的相关文档及其附带的元数据传递给LLM,从而生成响应。

三、代码实施

3.1 安装所需的包

pip install -qU langchain openai tiktoken pyPDF2 chainlitconda install -c conda-forge chromadb

3.2 代码实施

#import required librariesfrom langchain.embeddings import OpenAIEmbeddingsfrom langchain.text_splitter import RecursiveCharacterTextSplitterfrom langchain.vectorstores  import Chromafrom langchain.chains import RetrievalQAWithSourcesChainfrom langchain.chat_models import ChatOpenAIfrom langchain.prompts.chat import (ChatPromptTemplate,                                    SystemMessagePromptTemplate,                                    HumanMessagePromptTemplate)#import chainlit as climport PyPDF2from io import BytesIOfrom getpass import getpass#import osfrom configparser import ConfigParserenv_config =  ConfigParser()# Retrieve the openai key from the environmental variablesdef read_config(parser: ConfigParser, location: str) -> None:    assert parser.read(location), f"Could not read config {location}"#CONFIG_FILE = os.path.join("./env", "env.conf")read_config(env_config, CONFIG_FILE)api_key = env_config.get("openai", "api_key").strip()#os.environ["OPENAI_API_KEY"] = api_key# Chunking the texttext_splitter = RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=100)##system templatesystem_template = """Use the following pieces of context to answer the user's question.If you don't know the answer, just say that you don't know, don't try to make up an answer.ALWAYS return a "SOURCES" part in your answer.The "SOURCES" part should be a reference to the source of the document from which you got your answer.Begin!----------------{summaries}"""messages = [SystemMessagePromptTemplate.from_template(system_template),HumanMessagePromptTemplate.from_template("{question}"),]prompt = ChatPromptTemplate.from_messages(messages)chain_type_kwargs = {"prompt": prompt}#Decorator to react to the user websocket connection event. @cl.on_chat_startasync def init():    files = None    # Wait for the user to upload a PDF file    while files is None:        files = await cl.AskFileMessage(            content="Please upload a PDF file to begin!",            accept=["application/pdf"],        ).send()    file = files[0]    msg = cl.Message(content=f"Processing `{file.name}`...")    await msg.send()    # Read the PDF file    pdf_stream = BytesIO(file.content)    pdf = PyPDF2.PdfReader(pdf_stream)    pdf_text = ""    for page in pdf.pages:        pdf_text += page.extract_text()    # Split the text into chunks    texts = text_splitter.split_text(pdf_text)    # Create metadata for each chunk    metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]    # Create a Chroma vector store    embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY"))    docsearch = await cl.make_async(Chroma.from_texts)(        texts, embeddings, metadatas=metadatas    )    # Create a chain that uses the Chroma vector store    chain = RetrievalQAWithSourcesChain.from_chain_type(        ChatOpenAI(temperature=0,                    openai_api_key=os.environ["OPENAI_API_KEY"]),        chain_type="stuff",        retriever=docsearch.as_retriever(),    )    # Save the metadata and texts in the user session    cl.user_session.set("metadatas", metadatas)    cl.user_session.set("texts", texts)    # Let the user know that the system is ready    msg.content = f"`{file.name}` processed. You can now ask questions!"    await msg.update()    cl.user_session.set("chain", chain)# react to messages coming from the UI@cl.on_messageasync def process_response(res):    chain = cl.user_session.get("chain")  # type: RetrievalQAWithSourcesChain    cb = cl.AsyncLangchainCallbackHandler(        stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"])    cb.answer_reached = True    res = await chain.acall(res, callbacks=[cb])    print(f"response: {res}")    answer = res["answer"]    sources = res["sources"].strip()    source_elements = []    # Get the metadata and texts from the user session    metadatas = cl.user_session.get("metadatas")    all_sources = [m["source"] for m in metadatas]    texts = cl.user_session.get("texts")    if sources:        found_sources = []        # Add the sources to the message        for source in sources.split(","):            source_name = source.strip().replace(".", "")            # Get the index of the source            try:                index = all_sources.index(source_name)            except ValueError:                continue            text = texts[index]            found_sources.append(source_name)            # Create the text element referenced in the message            source_elements.append(cl.Text(content=text, name=source_name))        if found_sources:            answer += f"\nSources: {', '.join(found_sources)}"        else:            answer += "\nNo sources found"    if cb.has_streamed_final_answer:        cb.final_stream.elements = source_elements        await cb.final_stream.update()    else:        await cl.Message(content=answer, elements=source_elements).send()

3.3 运行应用程序

chainlit run <name of the python script>

3.4 Chainlit UI

点击返回的页码,详细说明所引用的文档内容。

我们也可以更改设置。

参考文献:

[1] https://medium.aiplanet.com/building-llm-application-for-document-question-answering-using-chainlit-d15d10469069

这篇关于LLM漫谈(三)| 使用Chainlit和LangChain构建文档问答的LLM应用程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/605137

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(