torch.fx量化——以cifar10数据集为例

2024-01-14 11:28

本文主要是介绍torch.fx量化——以cifar10数据集为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 构建需要量化的模型

talk is cheap, show me the code

import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
import torchvision
from torchvision import transforms
from torchvision.models.resnet import resnet50, resnet18
from torch.quantization.quantize_fx import prepare_fx, convert_fx
from torch.ao.quantization.fx.graph_module import ObservedGraphModule
from torch.quantization import (get_default_qconfig,
)
from torch import optim
import os
import timedef train_model(model, train_loader, test_loader, device):# The training configurations were not carefully selected.learning_rate = 1e-2num_epochs = 20criterion = nn.CrossEntropyLoss()model.to(device)# It seems that SGD optimizer is better than Adam optimizer for ResNet18 training on CIFAR10.optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-5)# optimizer = optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)for epoch in range(num_epochs):# Trainingmodel.train()running_loss = 0running_corrects = 0for inputs, labels in train_loader:inputs = inputs.to(device)labels = labels.to(device)# zero the parameter gradientsoptimizer.zero_grad()# forward + backward + optimizeoutputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)loss.backward()optimizer.step()# statisticsrunning_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)train_loss = running_loss / len(train_loader.dataset)train_accuracy = running_corrects / len(train_loader.dataset)# Evaluationmodel.eval()eval_loss, eval_accuracy = evaluate_model(model=model, test_loader=test_loader, device=device, criterion=criterion)print("Epoch: {:02d} Train Loss: {:.3f} Train Acc: {:.3f} Eval Loss: {:.3f} Eval Acc: {:.3f}".format(epoch, train_loss, train_accuracy, eval_loss, eval_accuracy))return modeldef prepare_dataloader(num_workers=8, train_batch_size=128, eval_batch_size=256):train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])train_set = torchvision.datasets.CIFAR10(root="data", train=True, download=True, transform=train_transform)# We will use test set for validation and test in this project.# Do not use test set for validation in practice!test_set = torchvision.datasets.CIFAR10(root="data", train=False, download=True, transform=test_transform)train_sampler = torch.utils.data.RandomSampler(train_set)test_sampler = torch.utils.data.SequentialSampler(test_set)train_loader = torch.utils.data.DataLoader(dataset=train_set,batch_size=train_batch_size,sampler=train_sampler,num_workers=num_workers,)test_loader = torch.utils.data.DataLoader(dataset=test_set,batch_size=eval_batch_size,sampler=test_sampler,num_workers=num_workers,)return train_loader, test_loaderif __name__ == "__main__":train_loader, test_loader = prepare_dataloader()# first finetune model on cifar, we don't have imagnet so using cifar as testmodel = resnet18(pretrained=True)model.fc = nn.Linear(512, 10)if os.path.exists("r18_row.pth"):model.load_state_dict(torch.load("r18_row.pth", map_location="cpu"))else:train_model(model, train_loader, test_loader, torch.device("cuda"))print("train finished.")torch.save(model.state_dict(), "r18_row.pth")

2. 编写模型量化代码

def quant_fx(model):model.eval()qconfig = get_default_qconfig("fbgemm")qconfig_dict = {"": qconfig,# 'object_type': []}model_to_quantize = copy.deepcopy(model)prepared_model = prepare_fx(model_to_quantize, qconfig_dict)print("prepared model: ", prepared_model)quantized_model = convert_fx(prepared_model)print("quantized model: ", quantized_model)torch.save(model.state_dict(), "r18.pth")torch.save(quantized_model.state_dict(), "r18_quant.pth")

我们做一个evaluation,来验证一下,在不校准的情况下,精度如何:

def evaluate_model(model, test_loader, device=torch.device("cpu"), criterion=None):t0 = time.time()model.eval()model.to(device)running_loss = 0running_corrects = 0for inputs, labels in test_loader:inputs = inputs.to(device)labels = labels.to(device)outputs = model(inputs)_, preds = torch.max(outputs, 1)if criterion is not None:loss = criterion(outputs, labels).item()else:loss = 0# statisticsrunning_loss += loss * inputs.size(0)running_corrects += torch.sum(preds == labels.data)eval_loss = running_loss / len(test_loader.dataset)eval_accuracy = running_corrects / len(test_loader.dataset)t1 = time.time()print(f"eval loss: {eval_loss}, eval acc: {eval_accuracy}, cost: {t1 - t0}")return eval_loss, eval_accuracy

evaluation结果:

量化前:eval loss: 0.0, eval acc: 0.8476999998092651, cost: 2.8914074897766113
量化后(未校准):eval loss: 0.0, eval acc: 0.15240000188350677, cost: 1.240293264389038

可以看到,精度下降严重。此时需要进行一下校准。

3. 编写校准函数代码

def calib_quant_model(model, calib_dataloader):assert isinstance(model, ObservedGraphModule), "model must be a perpared fx ObservedGraphModule."model.eval()with torch.inference_mode():for inputs, labels in calib_dataloader:model(inputs)print("calib done.")

再次eval一下

def quant_calib_and_eval(model):# test only on CPUmodel.to(torch.device("cpu"))model.eval()qconfig = get_default_qconfig("fbgemm")qconfig_dict = {"": qconfig,# 'object_type': []}model2 = copy.deepcopy(model)model_prepared = prepare_fx(model2, qconfig_dict)model_int8 = convert_fx(model_prepared)model_int8.load_state_dict(torch.load("r18_quant.pth"))model_int8.eval()a = torch.randn([1, 3, 224, 224])o1 = model(a)o2 = model_int8(a)diff = torch.allclose(o1, o2, 1e-4)print(diff)print(o1.shape, o2.shape)print(o1, o2)get_output_from_logits(o1)get_output_from_logits(o2)train_loader, test_loader = prepare_dataloader()evaluate_model(model, test_loader)evaluate_model(model_int8, test_loader)# calib quant modelmodel2 = copy.deepcopy(model)model_prepared = prepare_fx(model2, qconfig_dict)model_int8 = convert_fx(model_prepared)torch.save(model_int8.state_dict(), "r18.pth")model_int8.eval()model_prepared = prepare_fx(model2, qconfig_dict)calib_quant_model(model_prepared, test_loader)model_int8 = convert_fx(model_prepared)torch.save(model_int8.state_dict(), "r18_quant_calib.pth")evaluate_model(model_int8, test_loader)
量化前: eval loss: 0.0, eval acc: 0.8476999998092651, cost: 2.8914074897766113
量化后(未校准)eval loss: 0.0, eval acc: 0.15240000188350677, cost: 1.240293264389038
calib done.
量化后(已校准)eval loss: 0.0, eval acc: 0.8442999720573425, cost: 1.2966759204864502

这篇关于torch.fx量化——以cifar10数据集为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604997

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.