去伪存真——渠道作弊分析

2024-01-14 10:10

本文主要是介绍去伪存真——渠道作弊分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.talkingdata.net/?p=1082

为什么这个渠道的数据很好,可就是不盈利呢?是我的产品有问题呢?或是渠道作弊?这还真是让人头疼。行业关于渠道作弊这块分享的信息真是太少了,各CP只能跌跌撞撞,靠自己摸着石头过河,那这回我们一起走进数据的世界,用数据说话,拨开迷雾辨真伪吧。

初级渠道作弊:同时看一次性用户指标/比例&平均单次使用时长指标

渠道的初级作弊,就是只拉新增用户,这种刷作弊的方式较容易发现,因为用户一次性用户指标较低,平均单次使用时长也远低于其它渠道均值,或是自身渠道其它的值。

笔者曾经遇到一个做手游的好友,他的产品投到新渠道后,新增用户连续3天暴涨500%,但是留存却不高,想咨询是什么地方有问题。于是我帮他查看了这个新渠道的两个指标:一次性用户指标&平均单次使用时长均低于其它渠道均值,基本上可以判断是渠道作弊了,再看新增用户的时间段,立马验证。正常用户都是在中午和晚上新增较多一个空闲的时间段,而这个增量正好相反,明显是一个上班的时间段(8:00-18:00)。

渠道作弊1

 

如果你只投放了少量渠道,不能确定数据的时候,也可以对比TalkingData每月出的benchmark里的一次性用户比例&平均使用时长数据进行对比。

中级渠道作弊:看页面明细

一些手段稍微高一点的作弊,会将你应用中的SDK,打到别的热门应用中去,这样不但新增上去了,而且各项数据都还非常好看,没有破绽,但是就是盈利上不去。

这个时候就要需要关注页面明细了,查看页面明细是否是自家的,如果不是自家的页面,那这就很有可能存在作弊的问题。

渠道作弊2

高级渠道作弊:多数据维度比对

高级渠道作弊已经超出了一般人类可以想象的范畴,达到了智能级别,无论用户留存、机型、地域、联网等连手机号注册都可以作弊(笔者第一次知道的时候和小伙伴们都惊呆了。)以至笔者当时只能订了一个指标:LTV指标,如果这个指标达不到渠道平均水平,那么就放弃这个渠道,无论这个渠道是否作弊。但是后来随着对应用和渠道接触的越来越多,错杀了不少好渠道,觉得还是要多维度数据指标进行评判,TalkingData就有对这方面数据进行健康度评估。

渠道作弊3

如果要是游戏应用一般看用户玩家等级的比例就可以了,一般渠道是不会雇人去玩游戏升级的。

渠道作弊4

俗话说的好,道高一尺,魔高一丈,以上方法也不一定全面,如果还有别的分析渠道作弊的方法,大家多多分享出来。当然渠道作弊的情况还是比较少发生的,一般情况下如果应用数据不好,还是要从自己的应用中去找问题。

 

另附

在实际推广中,App铺的渠道是非常多的,要从众多渠道中发现异常或者挑出不合适的渠道非常耗费人力,而且容易出错。所以这里分享一个游戏渠道数据打分模型,根据App设定当渠道高于X分的时候,要加大投放力度,当低于X分的时候,需要跟进该渠道,检查数据是否有异常或者是剔除不合适的渠道。这样可以节省不少人力,并提高排查准确率。这里引用一下游戏数据分析达人——石头曾介绍过“Z-score标准化”进行打分处理:

数据标准化“Z-score标准化”渠道作弊6

μ为样本均值(Excel中函数Average),σ为样本标准差(Excel中函数STDEV)。

标准化多纬度数据:

渠道作弊7

标准化之后接着来就是要想办法把数据变成5分制(也就是1分、2分、3分、4分、5分),这里是将X的套用分数如下:

渠道作弊8

而后根据你目前游戏目标,给不同指标加上权重汇总后,可以得到相应指标(同样这里建议样本数据不能低于5个,不然会影响数据准确性)。这种方法前期需要根据实际情况调整权重,剔除异常值,稳定后,模型使用将会非常快捷、准确、省力、方便。

这篇关于去伪存真——渠道作弊分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604807

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据