【天池—街景字符编码识别】Task 1 赛题理解

2024-01-14 09:58

本文主要是介绍【天池—街景字符编码识别】Task 1 赛题理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1 比赛说明
  • 2 数据说明
    • 2.1 数据来源
    • 2.2 数据集
    • 2.3 数据标注信息(json文件)
  • 3 评价标准
  • 4 提交的结果形式
  • 5 解题思路(重点)
    • 5.1 简单入门思路:定长字符识别
    • 5.2 专业字符识别思路:不定长字符识别
    • 5.3 专业分类思路:检测再识别

1 比赛说明

  • 比赛链接:https://tianchi.aliyun.com/competition/entrance/531795/introduction
  • 比赛任务:以计算机视觉中字符识别为背景,要求参赛者预测真实场景下的字符识别,这是一个典型的字符识别问题——零基础入门CV赛事之街景字符识别。

2 数据说明

2.1 数据来源

  来源于http://ufldl.stanford.edu/housenumbers/的公开数据集。

2.2 数据集

  • 训练集:3W张照片
  • 验证集:1W张照片
  • 测试集A:4W张照片
  • 测试集B:4W张照片
  • 每张照片包括颜色图像和对应的编码类别和具体位置,如下图所示:
    在这里插入图片描述

2.3 数据标注信息(json文件)

  用记事本或Notepad++打开数据的json文件,部分数据如下所示:

{"000000.png": {"height": [219, 219], "label": [1, 9], "left": [246, 323], "top": [77, 81], "width": [81, 96]}, 
"000001.png": {"height": [32, 32], "label": [2, 3], "left": [77, 98], "top": [29, 25], "width": [23, 26]}, 
"000002.png": {"height": [15, 15], "label": [2, 5], "left": [17, 25], "top": [5, 5], "width": [8, 9]},
"000003.png": {"height": [34, 34], "label": [9, 3], "left": [57, 72], "top": [13, 13], "width": [15, 13]},"000004.png": {"height": [46, 46], "label": [3, 1], "left": [52, 74], "top": [7, 10], "width": [21, 15]}, 
"000005.png": {"height": [21, 21], "label": [3, 3], "left": [28, 38], "top": [6, 8], "width": [10, 11]}, 
"000006.png": {"height": [32, 32], "label": [2, 8], "left": [35, 47], "top": [10, 11], "width": [13, 13]}, 
"000007.png": {"height": [15, 15, 15], "label": [7, 4, 4], "left": [17, 25, 31], "top": [4, 4, 3], "width": [7, 6, 7]}, 
"000008.png": {"height": [24, 24, 24], "label": [1, 2, 8], "left": [19, 29, 38], "top": [4, 4, 5], "width": [14, 13, 17]}, 

  将其数据结构理解成”嵌套的字典“,那么每一张图片有height、label、left、top、width五种信息,其分别代表:top:左上角坐标X ; height:字符高度; left:左上角最表Y; width:字符宽度; label:字符编码。另外label表示该图片含有的数字(字符)。
  字符的坐标具体如下所示:
在这里插入图片描述

3 评价标准

  评价标准为准确率,选手提交结果与实际图片的编码进行对比,以编码整体识别准确率为评价指标,结果越大越好,具体计算公式如下:
s c o r e = 编 码 识 别 正 确 的 数 量 测 试 集 图 片 数 量 score = \frac {编码识别正确的数量}{测试集图片数量} score=
  要注意:任何一个字符错误都为错误。

4 提交的结果形式

  提交前请确保预测结果的格式与sample_submit.csv中的格式一致,以及提交文件后缀名为csv。

file_name, file_code
0010000.jpg,451
0010001.jpg,232
0010002.jpg,45
0010003.jpg,67
0010004.jpg,191
0010005.jpg,892

5 解题思路(重点)

  赛题本质是分类问题,需要对图片的字符进行识别。但赛题给定的数据图片中不同图片中包含的字符数量不等。图片的字符个数为从2个到6个不等。因此本次赛题的难点是需要对不定长的字符进行识别,与传统的图像分类任务有所不同

5.1 简单入门思路:定长字符识别

  定长文字的识别相对简单,应用场景也比较局限,最典型的场景就是验证码的识别机动车车牌的识别。由于字符数量是已知的、固定的,因此,网络结构比较简单,一般构建3层卷积层,2层全连接层便能满足“定长文字”的识别。
  将赛题抽象为一个定长字符识别问题,在赛题数据集中大部分图像中字符个数为2-4个,最多的字符 个数为6个。因此可以对于所有的图像都抽象为6个字符的识别问题,字符23填充为23XXXX,字符231填充为231XXX。
  经过填充之后,原始的赛题可以简化了6个字符的分类问题。在每个字符的分类中会进行11个类别的分类,假如分类为填充字符,则表明该字符为空。
  一些定长字符识别的例子:

  • 使用 Keras 来破解 captcha 验证码
  • 文字识别模型(入门篇:验证码识别)
  • GPU 学习深度学习系列Part 5:文字的识别与定位(识别车牌)

5.2 专业字符识别思路:不定长字符识别

  不定长文字在现实中大量存在,例如印刷文字、广告牌文字等,由于字符数量不固定、不可预知,因此,识别的难度也较大,这也是目前研究文字识别的主要方向。下面介绍不定长文字识别的常用方法:LSTM+CTC、CRNN、chinsesocr
  在字符识别研究中,有特定的方法来解决此种不定长的字符识别问题,比较典型的有CRNN字符识别模型。在本次赛题中给定的图像数据都比较规整,可以视为一个单词或者一个句子。
  一些不定长字符识别的例子:

  • https://my.oschina.net/u/876354/blog/3070699/print
  • https://zhuanlan.zhihu.com/p/29954560
  • 【OCR技术系列之七】端到端不定长文字识别CRNN算法详解

5.3 专业分类思路:检测再识别

  在赛题数据中已经给出了训练集、验证集中所有图片中字符的位置,因此可以首先将字符的位置进行识别,利用物体检测的思路完成。此种思路需要参赛者构建字符检测模型,对测试集中的字符进行识别。参赛者可以参考物体检测模型SSD或者YOLO来完成。

这篇关于【天池—街景字符编码识别】Task 1 赛题理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604772

相关文章

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

C#如何去掉文件夹或文件名非法字符

《C#如何去掉文件夹或文件名非法字符》:本文主要介绍C#如何去掉文件夹或文件名非法字符的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#去掉文件夹或文件名非法字符net类库提供了非法字符的数组这里还有个小窍门总结C#去掉文件夹或文件名非法字符实现有输入字

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

idea报错java: 非法字符: ‘\ufeff‘的解决步骤以及说明

《idea报错java:非法字符:‘ufeff‘的解决步骤以及说明》:本文主要介绍idea报错java:非法字符:ufeff的解决步骤以及说明,文章详细解释了为什么在Java中会出现uf... 目录BOM是什么?1. BOM的作用2. 为什么会出现 \ufeff 错误?3. 如何解决 \ufeff 问题?最

使用Java编写一个字符脱敏工具类

《使用Java编写一个字符脱敏工具类》这篇文章主要为大家详细介绍了如何使用Java编写一个字符脱敏工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、字符脱敏工具类2、测试工具类3、测试结果1、字符脱敏工具类import lombok.extern.slf4j.Slf4j

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装