【天池—街景字符编码识别】Task 1 赛题理解

2024-01-14 09:58

本文主要是介绍【天池—街景字符编码识别】Task 1 赛题理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1 比赛说明
  • 2 数据说明
    • 2.1 数据来源
    • 2.2 数据集
    • 2.3 数据标注信息(json文件)
  • 3 评价标准
  • 4 提交的结果形式
  • 5 解题思路(重点)
    • 5.1 简单入门思路:定长字符识别
    • 5.2 专业字符识别思路:不定长字符识别
    • 5.3 专业分类思路:检测再识别

1 比赛说明

  • 比赛链接:https://tianchi.aliyun.com/competition/entrance/531795/introduction
  • 比赛任务:以计算机视觉中字符识别为背景,要求参赛者预测真实场景下的字符识别,这是一个典型的字符识别问题——零基础入门CV赛事之街景字符识别。

2 数据说明

2.1 数据来源

  来源于http://ufldl.stanford.edu/housenumbers/的公开数据集。

2.2 数据集

  • 训练集:3W张照片
  • 验证集:1W张照片
  • 测试集A:4W张照片
  • 测试集B:4W张照片
  • 每张照片包括颜色图像和对应的编码类别和具体位置,如下图所示:
    在这里插入图片描述

2.3 数据标注信息(json文件)

  用记事本或Notepad++打开数据的json文件,部分数据如下所示:

{"000000.png": {"height": [219, 219], "label": [1, 9], "left": [246, 323], "top": [77, 81], "width": [81, 96]}, 
"000001.png": {"height": [32, 32], "label": [2, 3], "left": [77, 98], "top": [29, 25], "width": [23, 26]}, 
"000002.png": {"height": [15, 15], "label": [2, 5], "left": [17, 25], "top": [5, 5], "width": [8, 9]},
"000003.png": {"height": [34, 34], "label": [9, 3], "left": [57, 72], "top": [13, 13], "width": [15, 13]},"000004.png": {"height": [46, 46], "label": [3, 1], "left": [52, 74], "top": [7, 10], "width": [21, 15]}, 
"000005.png": {"height": [21, 21], "label": [3, 3], "left": [28, 38], "top": [6, 8], "width": [10, 11]}, 
"000006.png": {"height": [32, 32], "label": [2, 8], "left": [35, 47], "top": [10, 11], "width": [13, 13]}, 
"000007.png": {"height": [15, 15, 15], "label": [7, 4, 4], "left": [17, 25, 31], "top": [4, 4, 3], "width": [7, 6, 7]}, 
"000008.png": {"height": [24, 24, 24], "label": [1, 2, 8], "left": [19, 29, 38], "top": [4, 4, 5], "width": [14, 13, 17]}, 

  将其数据结构理解成”嵌套的字典“,那么每一张图片有height、label、left、top、width五种信息,其分别代表:top:左上角坐标X ; height:字符高度; left:左上角最表Y; width:字符宽度; label:字符编码。另外label表示该图片含有的数字(字符)。
  字符的坐标具体如下所示:
在这里插入图片描述

3 评价标准

  评价标准为准确率,选手提交结果与实际图片的编码进行对比,以编码整体识别准确率为评价指标,结果越大越好,具体计算公式如下:
s c o r e = 编 码 识 别 正 确 的 数 量 测 试 集 图 片 数 量 score = \frac {编码识别正确的数量}{测试集图片数量} score=
  要注意:任何一个字符错误都为错误。

4 提交的结果形式

  提交前请确保预测结果的格式与sample_submit.csv中的格式一致,以及提交文件后缀名为csv。

file_name, file_code
0010000.jpg,451
0010001.jpg,232
0010002.jpg,45
0010003.jpg,67
0010004.jpg,191
0010005.jpg,892

5 解题思路(重点)

  赛题本质是分类问题,需要对图片的字符进行识别。但赛题给定的数据图片中不同图片中包含的字符数量不等。图片的字符个数为从2个到6个不等。因此本次赛题的难点是需要对不定长的字符进行识别,与传统的图像分类任务有所不同

5.1 简单入门思路:定长字符识别

  定长文字的识别相对简单,应用场景也比较局限,最典型的场景就是验证码的识别机动车车牌的识别。由于字符数量是已知的、固定的,因此,网络结构比较简单,一般构建3层卷积层,2层全连接层便能满足“定长文字”的识别。
  将赛题抽象为一个定长字符识别问题,在赛题数据集中大部分图像中字符个数为2-4个,最多的字符 个数为6个。因此可以对于所有的图像都抽象为6个字符的识别问题,字符23填充为23XXXX,字符231填充为231XXX。
  经过填充之后,原始的赛题可以简化了6个字符的分类问题。在每个字符的分类中会进行11个类别的分类,假如分类为填充字符,则表明该字符为空。
  一些定长字符识别的例子:

  • 使用 Keras 来破解 captcha 验证码
  • 文字识别模型(入门篇:验证码识别)
  • GPU 学习深度学习系列Part 5:文字的识别与定位(识别车牌)

5.2 专业字符识别思路:不定长字符识别

  不定长文字在现实中大量存在,例如印刷文字、广告牌文字等,由于字符数量不固定、不可预知,因此,识别的难度也较大,这也是目前研究文字识别的主要方向。下面介绍不定长文字识别的常用方法:LSTM+CTC、CRNN、chinsesocr
  在字符识别研究中,有特定的方法来解决此种不定长的字符识别问题,比较典型的有CRNN字符识别模型。在本次赛题中给定的图像数据都比较规整,可以视为一个单词或者一个句子。
  一些不定长字符识别的例子:

  • https://my.oschina.net/u/876354/blog/3070699/print
  • https://zhuanlan.zhihu.com/p/29954560
  • 【OCR技术系列之七】端到端不定长文字识别CRNN算法详解

5.3 专业分类思路:检测再识别

  在赛题数据中已经给出了训练集、验证集中所有图片中字符的位置,因此可以首先将字符的位置进行识别,利用物体检测的思路完成。此种思路需要参赛者构建字符检测模型,对测试集中的字符进行识别。参赛者可以参考物体检测模型SSD或者YOLO来完成。

这篇关于【天池—街景字符编码识别】Task 1 赛题理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604772

相关文章

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言