一文读懂磁滞回曲线

2024-01-14 07:32
文章标签 一文 曲线 读懂 磁滞

本文主要是介绍一文读懂磁滞回曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

硬磁性材料,如钕铁硼强磁,有两个显著特征,一是在外磁场作用下能被强烈磁化,另一个是磁滞,即撤走外磁场后硬磁材料仍保留磁化状态,下图为硬磁材料的磁感应强度B与磁化场强度H之间的关系曲线。
在这里插入图片描述

当磁场按Hm→Hc→O→-Hc→-Hm→-Hc→O→Hc→Hm次序变化,相应的磁感应强度B则沿闭合曲线变化,这闭合曲线称为磁滞回线(上图蓝色曲线)

起始磁化曲线

图中的原点0表示磁化之前硬磁物质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段Oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至Hm时,B到达饱和值Bm,这条红色曲线称为起始磁化曲线。

磁滞

当磁场从Hs逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“0”点,而是沿另一条新的曲线Sr下降,比较线段OS和Sr可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=0时,B不为零,而保留剩磁Br。

退磁曲线

当磁场反向从O逐渐变至-Hc时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,Hc称为矫顽力,它的大小反映磁性材料保持剩磁状态的能力,紫色线段称为退磁曲线。

基本磁化曲线

对同一铁磁材料以不同的磁场强度H分别进行多次反复磁化,可得到多个大小不等的磁滞回线,如下图。将各磁滞回线的顶点连接起来,所得到的一条曲线称为基本磁化曲线或平均磁化曲线。基本磁化曲线和起始磁化曲线不是一条线,但二者差别不大,直流磁路计算时所用的磁化曲线都是基本磁化曲线。
在这里插入图片描述

内禀曲线

永磁材料在外磁场作用下被磁化后产生的内在磁感应强度,称为内禀磁感应强度Bi,又称磁极化强度J。描述内禀磁感应强度Bi(J)与磁场强度H关系的曲线是F反映永磁材料内在磁性能的曲线,称为内禀退磁曲线,简称内禀曲线。

内禀退磁曲线上磁感应强度B为0时,相应的磁场强度称为内禀矫顽力Hcj。内禀矫顽力的值反应永磁材料抗退磁能力的大小。
在这里插入图片描述

我们常听说的内禀退磁曲线矩形度或方形度,是指内禀曲线图中Hk与Hcj的比值。比值越大,即图上橙色线段越短,磁性能越稳定。Hk是内禀退磁曲线上当Bi=0.9Br时所对应退磁磁场强度值,是永磁材料必测参数之一。

一般说来,永磁材料生产厂家会提供各牌号产品在不同使用温度下的退磁曲线,如下图。看似复杂,但本质就是将多个退磁曲线和内禀曲线放在一张图上呈现。

在这里插入图片描述

永磁材料的主要参数

永磁材料磁滞回曲线的形状和特征可用若干参数表示,在实际应用中可根据这些参数在数量上的差异对磁材进行分类,并决定他们的用途,这些参数也是磁路设计中的主要依据。

1. 饱和磁场强度Hm

在磁性材料磁化过程中,使其感应强度B达到饱和值Bm的磁场强度称为饱和磁场强度Hm。磁材在充磁时应完全磁化,即充磁磁场强度H应达到Hm值,才能得到最大可能磁化的退磁曲线。这样的退磁曲线最稳定,能够展现出材料的最优磁性能。若充磁磁场强度H低于Hm值,则将有不同形状的磁滞曲线,其退磁曲线会不稳定,磁铁表现出的磁性能也较低。

由此可见,在磁材生产过程中应知道所用磁性材料的Hm值,在充磁过程中磁场务必达到甚至超过该值。

2. 剩余磁感应强度Br

磁滞回曲线与纵坐标轴的交点,即退磁曲线的起始点的B值,叫做剩余磁感应强度,简称剩磁,用Br表示。它是磁性材料在去除外磁场后,磁铁中的磁感应强度值。

3. 磁感应矫顽力Hc

在负向磁场作用下,磁铁中的磁感应强度B随着退磁磁场的增大而减弱。使磁铁中磁感应强度B达到零所需的去磁磁场强度,称为磁感矫顽力,简称矫顽力,用Hc或Hcb表示。

4. 磁导率

起始磁化曲线与磁滞回曲线上的任意一点的斜率,即任意一点上B和H的增量之比,叫做磁导率,它随运行点的不同而变化。软磁材料的磁导率很大,而永磁材料/硬磁材料的磁导率较小。

一般说来,剩余磁感应强度Br与矫顽力Hc之比越小,磁导率越小。对于永磁体,人们通常关心的是起始磁导率、最大磁导率和可逆磁导率这三个量,懂磁帝会在近期为大家详细讲解。

可以说磁化曲线和磁滞回线是磁性材料分类和选用的主要依据,下图为常见的几种典型的磁滞回线。
在这里插入图片描述

5. 磁能积和最大磁能积

永磁体的退磁曲线上任意一点的磁通密度/磁感应强度B与磁场强度H的乘积,称为磁能积BH,它的大小与该磁体在给定工作状态下所具有的磁能密度成正比。磁能积与磁感应强度B的关系曲线叫做磁能积曲线,它是以永磁体退磁曲线上各点B和H值乘积为横坐标,磁通密度B为纵坐标求得的曲线。

在这里插入图片描述

退磁曲线中间某个位置磁能积达到最大值,成为最大磁能积(BH)max。对于退磁曲线为直线的永磁材料,在(Br/2,Hc/2)处磁能积最大。


微信搜索「找磁材」,关注我们的公众号,带你了解更多关于磁材的知识和市场动态


这篇关于一文读懂磁滞回曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604404

相关文章

PR曲线——一个更敏感的性能评估工具

在不均衡数据集的情况下,精确率-召回率(Precision-Recall, PR)曲线是一种非常有用的工具,因为它提供了比传统的ROC曲线更准确的性能评估。以下是PR曲线在不均衡数据情况下的一些作用: 关注少数类:在不均衡数据集中,少数类的样本数量远少于多数类。PR曲线通过关注少数类(通常是正类)的性能来弥补这一点,因为它直接评估模型在识别正类方面的能力。 精确率与召回率的平衡:精确率(Pr

Linux 云计算底层技术之一文读懂 Qemu 架构

Qemu 架构概览 Qemu 是纯软件实现的虚拟化模拟器,几乎可以模拟任何硬件设备,我们最熟悉的就是能够模拟一台能够独立运行操作系统的虚拟机,虚拟机认为自己和硬件打交道,但其实是和 Qemu 模拟出来的硬件打交道,Qemu 将这些指令转译给真正的硬件。 正因为 Qemu 是纯软件实现的,所有的指令都要经 Qemu 过一手,性能非常低,所以,在生产环境中,大多数的做法都是配合 KVM 来完成

读懂《机器学习实战》代码—K-近邻算法

一,K近邻算法概念 K近邻算法即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。KNN 算法是一种 lazy-learning 算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN 分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为 n,

Post-Training有多重要?一文带你了解全部细节

1. 简介 随着LLM学界和工业界日新月异的发展,不仅预训练所用的算力和数据正在疯狂内卷,后训练(post-training)的对齐和微调方法也在不断更新。InstructGPT、WebGPT等较早发布的模型使用标准RLHF方法,其中的数据管理风格和规模似乎已经过时。近来,Meta、谷歌和英伟达等AI巨头纷纷发布开源模型,附带发布详尽的论文或报告,包括Llama 3.1、Nemotron 340

Matlab中BaseZoom()函数实现曲线和图片的局部放大

BaseZoom工具下载链接: 链接:https://pan.baidu.com/s/1yItVSinh6vU4ImlbZW6Deg?pwd=9dyl 提取码:9dyl 下载完之后将工具包放置合适的路径下,并在matlab中“设置路径”中添加相应的路径; 注:可以先运行如下图片中的语句,看看是否报错;如果报如下错误,说明matlab未安装“Image Processing Toolbox”工

一文说清什么是AI原生(AI Native)应用以及特点

引言:智能新纪元 如今,走在街头,哪儿不被智能科技包围?智能音箱、自动驾驶汽车、聊天机器人......这些都在用不同的方式提升我们的生活体验。然而,究竟什么才能称得上“AI原生应用”呢? 什么是AI原生?   AI原生不仅仅是简单地引入人工智能功能。真正的AI原生应用犹如一个智慧的“大脑”,它的每一个决策都依赖于深度学习与数据分析。以Siri为例,它通过学习用户的习惯和需求,提供个性化的

世界公认十大护眼灯数据出炉!一文看懂孩子用的台灯哪个牌子好

近年来,随着科技的迅猛发展,诸如智能手机、电脑等电子设备在工作、学习及娱乐中的应用日益广泛,人们对这些设备的依赖程度也随之加深。然而,长时间面对屏幕不可避免地给眼睛带来伤害,如眼疲劳、干燥甚至近视等问题。因此,市场对能够缓解眼疲劳的照明产品的需求日益增长。这类护眼照明产品通常采用无频闪、无紫外线辐射等技术,旨在减少对眼睛的潜在危害,有效保护视力健康,并降低眼疾的发生率。随着护眼台灯的不断创新进步,

一文详解go底层原理之垃圾回收

1 前置知识 1.1 三色回收法 三色回收法在gov1.5版本时是主流的gc方式 简单介绍一下流程: 暂停程序执行流程(开启STW)将新创建的对象全部标记为白色从根节点开始遍历,把遍历到的第一层全部改为灰色遍历一次灰色集合,将灰色集合引用对象变为黑色重复上述步骤,知道没有灰色对象清除白色对象结束STW 1.2 STW 上述1.1所说的STW就是指的stop the world,简单的说

涉密电脑插U盘会不会被发现?如何禁止涉密电脑插U盘?30秒读懂!

在涉密电脑插U盘的那一瞬间,你是否也好奇会不会被发现?涉密电脑的安全监控可是滴水不漏的!想知道如何彻底禁止涉密电脑插U盘?简单几招搞定,轻松锁死外部设备,信息安全无懈可击! 涉密电脑插U盘会不会被发现? 涉密电脑是否会在插入U盘时被发现,需要根据具体情况来判断。在一些情况下,涉密电脑可能没有安装任何监控软件或安全工具,插入U盘可能不会立即触发警告。然而,随着信息安全管理的不断升级,越来越多

基于yolov8的包装盒纸板破损缺陷测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的包装盒纸板破损缺陷检测系统是一种高效、智能的解决方案,旨在提高生产线上包装盒纸板的质量检测效率与准确性。该系统利用YOLOv8这一前沿的深度学习模型,通过其强大的目标检测能力,能够实时识别并标记出包装盒纸板上的各种破损缺陷,如划痕、撕裂、孔洞等。 在系统中,首先需对包含破损缺陷的包装盒纸板图像进行数据采集和标注,形成训练数据集。随后,利用这些数据进行模型训练,使