RAG代码实操之斗气强者萧炎

2024-01-14 01:04

本文主要是介绍RAG代码实操之斗气强者萧炎,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📑前言

本文主要是【RAG】——RAG代码实操的文章,如果有什么需要改进的地方还请大佬指出⛺️

🎬作者简介:大家好,我是听风与他🥇
☁️博客首页:CSDN主页听风与他
🌄每日一句:狠狠沉淀,顶峰相见

目录

    • 📑前言
    • 1.引言
    • 2.什么是RAG?
    • 3.LangChain实现RAG
      • 3.1基础环境准备
      • 3.2向量数据库
        • 1.「加载数据」
        • 2.「数据分块」
        • 3.「数据块存储」
    • 4.RAG实现
      • 1.「第一步:数据检索」
      • 2.「第二步:提示增强」
      • 3.「第三步:答案生成」
    • 📑文章末尾

1.引言

  • 针对大型语言模型效果不好的问题,之前人们主要关注大模型再训练、大模型微调、大模型的Prompt增强,但对于专有、快速更新的数据却并没有较好的解决方法,为此检索增强生成(RAG)的出现,弥合了LLM常识和专有数据之间的差距。

    今天给大家分享的这篇文章,将介绍RAG的概念理论,并带大家利用LangChain进行编排,OpenAI语言模型、Weaviate 矢量数据库(也可以自己搭建Milvus向量数据库)来实现简单的 RAG 管道。

2.什么是RAG?

  • RAG的全称是Retrieval-Augmented Generation,中文翻译为检索增强生成。它是一个为大模型提供外部知识源的概念,这使它们能够生成准确且符合上下文的答案,同时能够减少模型幻觉。

3.LangChain实现RAG

3.1基础环境准备

  • 1、安装所有需要依赖的相关python包,其中包括用于编排的langchain、大模型接口openai、矢量数据库的客户端 weaviate-client。
pip install langchain openai weaviate-client

3.2向量数据库

接下来,你需要准备一个矢量数据库作为保存所有附加信息的外部知识源。该矢量数据库是通过以下步骤填充的:1)加载数据;2)数据分块;3)数据[块存储]

1.「加载数据」
  • 这里选择了一篇斗破苍穹的小说,作为文档输入 。文档是txt文本,要加载文本这里使用 LangChain 的 TextLoader。
from langchain.document_loaders import TextLoader
loader = TextLoader('a.txt')
documents = loader.load()
2.「数据分块」
  • 因为文档在其原始状态下太长(将近5万行),无法放入大模型的上下文窗口,所以需要将其分成更小的部分。LangChain 内置了许多用于文本的分割器。这里使用 chunk_size 约为 1024 且 chunk_overlap 为128 的 CharacterTextSplitter 来保持块之间的文本连续性。
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=128)
chunks = text_splitter.split_documents(documents)

安装依赖

pip install tiktoken
3.「数据块存储」
  • 要启用跨文本块的语义搜索,需要为每个块生成向量嵌入,然后将它们与其嵌入存储在一起。要生成向量嵌入,可以使用 OpenAI 嵌入模型,并使用 Weaviate 向量数据库来进行存储。通过调用 .from_documents(),矢量数据库会自动填充块。
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Weaviate
import weaviate
from weaviate.embedded import EmbeddedOptions
import openaiclient = weaviate.Client(embedded_options = EmbeddedOptions()
)vectorstore = Weaviate.from_documents(client = client,documents = chunks,# embedding = OpenAIEmbeddings(),embedding = OpenAIEmbeddings(openai_api_key="openai的key",openai_api_base = "中转api"),by_text = False
)

4.RAG实现

1.「第一步:数据检索」

  • 将数据存入矢量数据库后,就可以将其定义为检索器组件,该组件根据用户查询和嵌入块之间的语义相似性获取相关上下文。
retriever = vectorstore.as_retriever()

2.「第二步:提示增强」

  • 完成数据检索之后,就可以使用相关上下文来增强提示。在这个过程中需要准备一个提示模板。可以通过提示模板轻松自定义提示,如下所示。
from langchain.prompts import ChatPromptTemplate
template = """你是一个问答机器人助手,请使用以下检索到的上下文来回答问题,如果你不知道答案,就说你不知道。问题是:{question},上下文: {context},答案是:
"""
prompt = ChatPromptTemplate.from_template(template)

3.「第三步:答案生成」

  • 利用 RAG 管道构建一条链,将检索器、提示模板和 LLM 链接在一起。定义了 RAG 链,就可以调用它了。
from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
llm = ChatOpenAI(model_name="gpt-3.5-turbo",openai_api_key="openai的key",openai_api_base = "中转api", temperature=0)rag_chain = ({"context": retriever,  "question": RunnablePassthrough()} | prompt | llm| StrOutputParser() 
)query = "萧薰儿是谁?"
res=rag_chain.invoke(query)
print(f'答案:{res}')

总的来说,RAG的生成过程如下图所示:

img

📑文章末尾

在这里插入图片描述

这篇关于RAG代码实操之斗气强者萧炎的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/603409

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...