【hiho一下 第四十二周】骨牌覆盖问题·二

2024-01-13 11:58

本文主要是介绍【hiho一下 第四十二周】骨牌覆盖问题·二,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题地址:http://hihocoder.com/contest/hiho42/problem/1
2xN的骨牌问题:http://blog.csdn.net/smile_watermelon/article/details/45151175

题目描述

上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?
所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?
首先我们可以肯定,奇数长度一定是没有办法覆盖的;对于偶数长度,比如2,4,我们有下面几种覆盖方式:【注】原题中此处图片有错误,下图是更正后的图片

3×N问题举例

输入

第1行:1个整数N。表示棋盘长度。1≤N≤100,000,000

输出

第1行:1个整数,表示覆盖方案数 MOD 12357

样例输入

62247088

样例输出

4037


解题思路

原题中有一个解题提示,我看了以后觉得太乱了,非常不好懂,下面是我整理的我的思路。

看到这个题,我还是尝试按照动态规划的思想去找一个规律,将问题划归为其子问题,不难发现,如果要将问题划归为子问题的话,需要使得骨牌排列的整齐,如下图1的形式,而不是其他几种形式(灰色部分表示已经摆好骨牌了):

灰色部分表示已经摆好骨牌了

即,当我们已经把骨牌整齐的排练好某x长度后,剩余的n-x长度即是一个子问题。接下来,我们看有哪些摆放形式可以构成图1中的形式。

  1. 首先,我们当n=2时,我们可以很轻松的找出所有可能的构造形式,如下:
    这里写图片描述

  2. 然后我们考虑,是否还有其他形式呢?我们发现当n=4时,有如下两种未出现过的构造形式:
    这里写图片描述

  3. 接下来还有吗?还有,n=6时,有如下两种未出现过的结构:
    这里写图片描述

  4. 同理,n=8,10,12,14…时都会新添两种类似步骤2和步骤3中的新的排列方式。

我们需要注意的是,在n增大的同时,除了新增的排列方式之外,原先的排列方式也是存在的。

那么如何推导递归式呢?

我们每次只考虑当前步骤的摆法,然后减去当前步骤占用的空间,然后划归为其子问题。

对于n,我们假设解决方案数目为f(n)。考虑如下:

  • 当n为奇数时,不论如何摆放都不可能整齐得把所有位置都摆好,此时f(n)=0
  • 当n为正偶数时,如果n>=2,先考虑将其最前面的2个空间摆好,按照上文中的分析有3种摆法,然后问题可归为子问题,即有3*f(n-2)种摆法
  • 如果n>=4,再考虑将其前面的4个空间摆好(并且只按上文分析中n=4时新加的两种方式摆放骨牌),按照上文的分析有2中摆法,然后问题可归为子问题,即又有2*f(n-4)种摆法
  • 继续判断n>=6,如果成立,则考虑将其前面的6个空间摆好(并且只按上文分析中n=6时新加的两种方式摆放骨牌),按照上文的分析有2中摆法,然后问题可归为子问题,即又有2*f(n-6)种摆法
  • 以此类推,直到所有的n长度都按最特殊的摆法摆放,可以有f(n) = 3 * f(n-2) + 2 * f(n-4) + 2 * f(n-6) + … 2 * f(0)
  • 特殊的,我们有f(0)=1,即没有空间可摆放骨牌时,其整齐的解决摆放方案有1种(就是什么都不放)

至此,我们有以下递归式:

f(n) =

1,0,3f(n2)+2f(n4)+2f(n6)+...+2f(0),if n = 0if n < 0 or n is oddotherwise

有了公式之后,我们就可以编程实现了。编程实现上,看起来问题不大,然而,如果我们使用常规递归方式实现的话,问题很大。例如,题目中给出的测试数据是62247088,如果我们使用递归方法来实现代码的话,其调用过程大概如下,f(62247088)先调用f(62247086),f(62247086)中又调用f(62247084),f(62247084)中又调用f(62247082)……,这个过程中程序要不停的压栈,实在是难以想象。事实上,我一开始代码就是这么写的,程序跑了一会儿之后,我的小破本儿竟然直接黑屏重启了 : (

该如何优化代码呢?

传统的递归过程是f(n)调用f(n-1),f(n-2)…,我们何不尝试反过来求解呢?先求f(2),然后是f(4),然后是f(6),直到求出f(n)为止。

另外,我们还可以发现如下规律:

  • f(n) = 3 * f(n-2) + 2 * f(n-4) + … + 2 * f(0)
  • f(n+2) = 3 * f(n) + 2 * f(n-2) + 2 * f(n-4) + … + 2 * f(0)
  • f(n+4) = 3 * f(n+2) + 2 * f(n) + 2 * f(n-2) + 2 * f(n-4) + … + 2 * f(0)

因此我们可以利用在计算f(n)时的数据来计算f(n+2),f(n+4)…这样我们优雅的解决了两个问题:第一,不用递归调用函数来求解子问题;第二,不用开辟一个O(n)的空间来存储子问题的值。

最后,不要忘记对结果取模(MOD 12357)

代码

#include <stdio.h>int main() {int n;scanf("%d", &n);        // 输入数据if (n & 1 || n < 0) {   // 如果是奇数或者负数,输出0printf("0\n");} else if (n == 0) {      // 如果是0,输出1printf("1\n");} else {// sum存储f(i),last存储f(i-2),lastSum存储2*(f(i-4)+f(i-6)+...+f(0))// 初始化值i=2,last=f(i-2)=f(0)=1,lastSum=0int i = 2, sum, last = 1, lastSum = 0;// 循环计算f(i),直到f(n)for (; i <= n; i += 2) {// 计算f(i),f(i)=3*f(i-2)+2*(f(i-4)+f(i-6)+...+f(0))sum = 3 * last + lastSum;   sum %= 12357;       // 取模// 更新lastSum,即2*f(i-2)+2*(f(i-4)+f(i-6)+...+f(0))lastSum += 2 * last;    lastSum %= 12357;   // 取模// 更新last,即last=f(i),以备计算f(i+2)时使用last = sum;}printf("%d\n", sum);    // 输出}return 0;
}

hihocoder平台代码提交 ACCEPT
时间:1520ms
内存:0MB


个人学习记录,如有错误请指正
// sfg1991@163.com
// 2015-04-20

这篇关于【hiho一下 第四十二周】骨牌覆盖问题·二的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/601380

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

最大流=最小割=最小点权覆盖集=sum-最大点权独立集

二分图最小点覆盖和最大独立集都可以转化为最大匹配求解。 在这个基础上,把每个点赋予一个非负的权值,这两个问题就转化为:二分图最小点权覆盖和二分图最大点权独立集。   二分图最小点权覆盖     从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。 建模:     原二分图中的边(u,v)替换为容量为INF的有向边(u,v),设立源点s和汇点t

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入

vscode中文乱码问题,注释,终端,调试乱码一劳永逸版

忘记咋回事突然出现了乱码问题,很多方法都试了,注释乱码解决了,终端又乱码,调试窗口也乱码,最后经过本人不懈努力,终于全部解决了,现在分享给大家我的方法。 乱码的原因是各个地方用的编码格式不统一,所以把他们设成统一的utf8. 1.电脑的编码格式 开始-设置-时间和语言-语言和区域 管理语言设置-更改系统区域设置-勾选Bata版:使用utf8-确定-然后按指示重启 2.vscode

POJ3041 最小顶点覆盖

N*N的矩阵,有些格子有物体,每次消除一行或一列,最少要几次消灭完。 行i - >列j 连边,表示(i,j)处有物体,即 边表示 物体。 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;impo