机器学习降维技术全面对比评析

2024-01-13 07:20

本文主要是介绍机器学习降维技术全面对比评析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

在机器学习领域,处理高维数据带来了与计算效率、模型复杂性和过度拟合相关的挑战。降维技术提供了一种解决方案,将数据转换为低维表示,同时保留基本信息。本文旨在比较和对比一些突出的降维技术,涵盖线性和非线性方法。

alt

线性技术

主成分分析(PCA)

  • 线性投影:PCA 执行线性投影以捕获数据中的最大方差。
  • 计算效率:高效且广泛使用,但假设线性关系。

线性判别分析 (LDA)

  • 有监督的降维:LDA 结合了类别信息来找到最好地分离类别的线性组合。
  • 分类重点:对于分类任务特别有用。

随机投影

  • 计算简单性:随机投影提供了一种计算有效的降维方法。
  • 近似保留:虽然计算效率高,但它仅提供成对距离的近似保留。

非线形技术

t-Distributed Stochastic Neighbor Embedding (t-SNE)

  • 非线性嵌入:t-SNE 对于在低维空间中可视化高维数据非常有效。
  • 计算成本:计算成本昂贵,限制了其在大型数据集中的使用。

Uniform Manifold Approximation and Projection (UMAP)

  • 效率:UMAP 的计算效率比 t-SNE 更高,使其适用于更大的数据集。
  • 全局和局部保留:有效保留数据中的局部和全局结构。

自动编码器

  • 神经网络方法:自动编码器使用神经网络来学习高维空间和低维空间之间的非线性映射。
  • 表示学习:能够学习分层表示,但可能对超参数敏感。

Isomap(等轴测图)

  • 测地距离的保留:Isomap 专注于保留测地距离,捕获数据的内在几何形状。
  • 对噪声的敏感性:对噪声和异常值敏感,需要仔细的预处理。

局部线性嵌入 (LLE)

  • 本地关系:LLE 专注于保留数据点之间的本地关系。
  • 参数敏感性:对邻居的选择敏感,并且可能难以保存全局结构。

Code

下面是一个完整的 Python 代码,使用流行的 scikit-learn 库将各种降维技术应用于 Iris 数据集,并用绘图可视化结果。确保您的 Python 环境中安装了 scikit-learn 和 matplotlib:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.manifold import TSNE
from sklearn.manifold import Isomap
from sklearn.manifold import LocallyLinearEmbedding
from sklearn.manifold import MDS
from sklearn.manifold import SpectralEmbedding
from umap import UMAP
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier

# Load Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# Standardize the data
X_std = StandardScaler().fit_transform(X)

# Define dimensionality reduction techniques
methods = [
    ('PCA', PCA(n_components=2)),
    ('LDA', LDA(n_components=2)),
    ('t-SNE', TSNE(n_components=2)),
    ('Isomap', Isomap(n_components=2)),
    ('LLE', LocallyLinearEmbedding(n_components=2)),
    ('MDS', MDS(n_components=2)),
    ('Spectral Embedding', SpectralEmbedding(n_components=2)),
    ('UMAP', UMAP(n_components=2)),
]

# Apply dimensionality reduction and plot results
plt.figure(figsize=(1510))
for i, (name, model) in enumerate(methods, 1):
    plt.subplot(33, i)
    
    # Modified part for LDA
    if name == 'LDA':
        reduced_data = model.fit_transform(X_std, y)
    else:
        reduced_data = model.fit_transform(X_std)
    
    plt.scatter(reduced_data[:, 0], reduced_data[:, 1], c=y, cmap=plt.cm.Set1, edgecolor='k', s=40)
    plt.title(name)
    plt.xlabel('Component 1')
    plt.ylabel('Component 2')

plt.tight_layout()
plt.show()

此代码片段在 Iris 数据集上使用 PCA、LDA、t-SNE、Isomap、LLE、MDS、Spectral Embedding 和 UMAP 等降维技术,并绘制降维后的数据。您可以在缩小的空间中观察每种技术的不同聚类。请随意尝试其他数据集或根据您的具体需求修改代码。

alt

总结

总之,降维技术的选择取决于数据的具体特征和分析的目标。 PCA 和 LDA 等线性方法简单高效,但可能难以处理非线性关系。 t-SNE 和 UMAP 等非线性技术擅长捕获复杂结构,但也带来计算挑战。自动编码器提供了一种灵活的基于神经网络的方法,Isomap 和 LLE 等方法专注于保留特定的几何方面。了解每种技术的优点和局限性对于为给定数据集和任务选择最合适的方法至关重要,从而确保机器学习应用程序获得最佳结果。

本文由 mdnice 多平台发布

这篇关于机器学习降维技术全面对比评析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/600654

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现Microsoft Office自动化的几种方式及对比详解

《Python实现MicrosoftOffice自动化的几种方式及对比详解》办公自动化是指利用现代化设备和技术,代替办公人员的部分手动或重复性业务活动,优质而高效地处理办公事务,实现对信息的高效利用... 目录一、基于COM接口的自动化(pywin32)二、独立文件操作库1. Word处理(python-d

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

python中字符串拼接的几种方法及优缺点对比详解

《python中字符串拼接的几种方法及优缺点对比详解》在Python中,字符串拼接是常见的操作,Python提供了多种方法来拼接字符串,每种方法有其优缺点和适用场景,以下是几种常见的字符串拼接方法,需... 目录1. 使用 + 运算符示例:优缺点:2. 使用&nbsjsp;join() 方法示例:优缺点:3

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件