机器学习降维技术全面对比评析

2024-01-13 07:20

本文主要是介绍机器学习降维技术全面对比评析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

在机器学习领域,处理高维数据带来了与计算效率、模型复杂性和过度拟合相关的挑战。降维技术提供了一种解决方案,将数据转换为低维表示,同时保留基本信息。本文旨在比较和对比一些突出的降维技术,涵盖线性和非线性方法。

alt

线性技术

主成分分析(PCA)

  • 线性投影:PCA 执行线性投影以捕获数据中的最大方差。
  • 计算效率:高效且广泛使用,但假设线性关系。

线性判别分析 (LDA)

  • 有监督的降维:LDA 结合了类别信息来找到最好地分离类别的线性组合。
  • 分类重点:对于分类任务特别有用。

随机投影

  • 计算简单性:随机投影提供了一种计算有效的降维方法。
  • 近似保留:虽然计算效率高,但它仅提供成对距离的近似保留。

非线形技术

t-Distributed Stochastic Neighbor Embedding (t-SNE)

  • 非线性嵌入:t-SNE 对于在低维空间中可视化高维数据非常有效。
  • 计算成本:计算成本昂贵,限制了其在大型数据集中的使用。

Uniform Manifold Approximation and Projection (UMAP)

  • 效率:UMAP 的计算效率比 t-SNE 更高,使其适用于更大的数据集。
  • 全局和局部保留:有效保留数据中的局部和全局结构。

自动编码器

  • 神经网络方法:自动编码器使用神经网络来学习高维空间和低维空间之间的非线性映射。
  • 表示学习:能够学习分层表示,但可能对超参数敏感。

Isomap(等轴测图)

  • 测地距离的保留:Isomap 专注于保留测地距离,捕获数据的内在几何形状。
  • 对噪声的敏感性:对噪声和异常值敏感,需要仔细的预处理。

局部线性嵌入 (LLE)

  • 本地关系:LLE 专注于保留数据点之间的本地关系。
  • 参数敏感性:对邻居的选择敏感,并且可能难以保存全局结构。

Code

下面是一个完整的 Python 代码,使用流行的 scikit-learn 库将各种降维技术应用于 Iris 数据集,并用绘图可视化结果。确保您的 Python 环境中安装了 scikit-learn 和 matplotlib:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.manifold import TSNE
from sklearn.manifold import Isomap
from sklearn.manifold import LocallyLinearEmbedding
from sklearn.manifold import MDS
from sklearn.manifold import SpectralEmbedding
from umap import UMAP
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier

# Load Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# Standardize the data
X_std = StandardScaler().fit_transform(X)

# Define dimensionality reduction techniques
methods = [
    ('PCA', PCA(n_components=2)),
    ('LDA', LDA(n_components=2)),
    ('t-SNE', TSNE(n_components=2)),
    ('Isomap', Isomap(n_components=2)),
    ('LLE', LocallyLinearEmbedding(n_components=2)),
    ('MDS', MDS(n_components=2)),
    ('Spectral Embedding', SpectralEmbedding(n_components=2)),
    ('UMAP', UMAP(n_components=2)),
]

# Apply dimensionality reduction and plot results
plt.figure(figsize=(1510))
for i, (name, model) in enumerate(methods, 1):
    plt.subplot(33, i)
    
    # Modified part for LDA
    if name == 'LDA':
        reduced_data = model.fit_transform(X_std, y)
    else:
        reduced_data = model.fit_transform(X_std)
    
    plt.scatter(reduced_data[:, 0], reduced_data[:, 1], c=y, cmap=plt.cm.Set1, edgecolor='k', s=40)
    plt.title(name)
    plt.xlabel('Component 1')
    plt.ylabel('Component 2')

plt.tight_layout()
plt.show()

此代码片段在 Iris 数据集上使用 PCA、LDA、t-SNE、Isomap、LLE、MDS、Spectral Embedding 和 UMAP 等降维技术,并绘制降维后的数据。您可以在缩小的空间中观察每种技术的不同聚类。请随意尝试其他数据集或根据您的具体需求修改代码。

alt

总结

总之,降维技术的选择取决于数据的具体特征和分析的目标。 PCA 和 LDA 等线性方法简单高效,但可能难以处理非线性关系。 t-SNE 和 UMAP 等非线性技术擅长捕获复杂结构,但也带来计算挑战。自动编码器提供了一种灵活的基于神经网络的方法,Isomap 和 LLE 等方法专注于保留特定的几何方面。了解每种技术的优点和局限性对于为给定数据集和任务选择最合适的方法至关重要,从而确保机器学习应用程序获得最佳结果。

本文由 mdnice 多平台发布

这篇关于机器学习降维技术全面对比评析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/600654

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

CPython与PyPy解释器架构的性能测试结果对比

《CPython与PyPy解释器架构的性能测试结果对比》Python解释器的选择对应用程序性能有着决定性影响,CPython以其稳定性和丰富的生态系统著称;而PyPy作为基于JIT(即时编译)技术的替... 目录引言python解释器架构概述CPython架构解析PyPy架构解析架构对比可视化性能基准测试测

python协程实现高并发的技术详解

《python协程实现高并发的技术详解》协程是实现高并发的一种非常高效的方式,特别适合处理大量I/O操作的场景,本文我们将简单介绍python协程实现高并发的相关方法,需要的小伙伴可以了解下... 目录核心概念与简单示例高并发实践:网络请求协程如何实现高并发:核心技术协作式多任务与事件循环非阻塞I/O与连接

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程