互信息法的原理详解

2024-01-12 15:52
文章标签 详解 原理 互信息

本文主要是介绍互信息法的原理详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 互信息法(上)
    • 互信息是什么
      • 从信息增益角度理解互信息
      • 从变量分布一致角度理解互信息
  • 卡方检验与离散变量的互信息法

互信息法(上)

尽管f_regression巧妙的构建了一个F统计量,并借此成功的借助假设检验来判断变量之间是否存在线性相关关系,但f_regression仍然存在较大局限,首当其冲当然是f_regression只能挖掘线性相关关系,也就是两个变量的同步变化关系,但除了线性关联关系外,变量之间存在其他类别的“关联关系”也是有助于模型建模,而其他类型的关系,无法被f_regression识别;其二就是由于离散变量(尤其是名义型变量)的数值大小是没有意义的,因此判断离散变量和其他变量的“线性关系”意义不大,因此f_regression只能作用于两个连续变量之间。综上所述,f_regression唯一适用的场景就是用于线性回归的连续变量特征筛选的过程中。而对于机器学习,针对于回归类问题,仅仅依靠f_regression进行连续型变量的特征筛选肯定是远远不够的。接下来我们就进一步介绍可以挖掘除了线性相关关系外的特征筛选方法:互信息法。

互信息是什么

从信息增益角度理解互信息

理解信息增益的求算过程,我们先了解一下信息熵。信息熵的计算公式:
H ( X ) = − ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) H(X) = -\sum^n_{i=1}p(x_i)log(p(x_i)) H(X)=i=1np(xi)log(p(xi))
其中, p ( x i ) p(x_i) p(xi)表示多分类问题中第 i i i个类别出现的概率, n n n表示类别总数,通常来说信息熵的计算都取底数为2,并且规定 l o g 0 = 0 log0=0 log0=0
假设有二分类数据集如下:

indexlabels
10
21
31
41

该数据集的信息增益为:
H ( X ) = − ( p ( x 1 ) l o g ( p ( x 1 ) ) + p ( x 2 ) l o g ( p ( x 2 ) ) ) = − ( 1 4 ) l o g ( 1 4 ) − ( 3 4 ) l o g ( 3 4 ) \begin{aligned} H(X) &= -(p(x_1)log(p(x_1))+p(x_2)log(p(x_2))) \\ &=-(\frac{1}{4})log(\frac{1}{4})-(\frac{3}{4})log(\frac{3}{4}) \end{aligned} H(X)=(p(x1)log(p(x1))+p(x2)log(p(x2)))=(41)log(41)(43)log(43)

-1/4 * np.log2(1/4) - 3/4 * np.log2(3/4)

在这里插入图片描述

#也可以借助scipy中的stats.entropy函数来完成信息熵的计算
scipy.stats.entropy([1/4, 3/4], base=2)#base等于2,表示log以2为底

在这里插入图片描述
如现有简单数组如下,在按照特征对标签进行分组后,各数据集的信息熵计算结果如下:

在这里插入图片描述

# 原数据集信息熵
ent_A = 0.918# 子数据集整体信息熵,各个子数据集信息熵加权求和
ent_B = 1/2 * 0.918 + 1/2 * 0#计算信息增益
gain = ent_A - ent_B
gain

在这里插入图片描述
而这也是ID 3决策树的基本建树流程,即找到最能够降低子数据集标签不纯度的特征对数据集进行划分,而这里的信息增益,其实也就是这个降低不纯度的量化的指标。

互信息的解释: 参考视频

所以从本质上来讲,互信息就是信息增益

所以为什么树模型以及以树模型为弱分类器的集成算法可以不进行特征筛选?
不难发现,原因是树模型的生长过程其实是会自动选取信息增益最大的列进行数据集划分(即树的生长)特征筛选的(CART树也有类似过程,只不过更换了信息熵为基尼系数)

互信息这一指标的实际作用,确实能够挑选出能有效帮助模型建模的特征。而互信息法的本质,我们也可以将其理解为一个剥离决策树模型训练、单纯只对每个特征进行互信息计算、然后根据互信息进行挑选特征的过程。

我们也可以借助sklearn中的相关函数来更加自动化的执行互信息的计算,对于上述分类变量的互信息计算过程,可以借助sklearn中评估函数的mutual_info_score来完成计算:

from sklearn.metrics import mutual_info_score
A = np.array([0, 0, 0, 1, 1, 1])
D = np.array([0, 1, 1, 0, 0, 0])
mutual_info_score(A, D)
mutual_info_score(D, A)

在这里插入图片描述

这里需要说明的两点是:

  1. mutual_info_score(A,D)和mutual_info_score(D,A)的计算结果是一样的,这是因为互信息具有对称性,用A解释D,也可以用D解释A;
  2. sklearn中互信息的计算是以e为底的

从变量分布一致角度理解互信息

在这里插入图片描述
假设有下面数据表:

特征A标签D
00
01
01
10
10
10
p_A0 = 1/2
p_A1 = 1/2
p_D0 = 2/3
p_D1 = 1/3p_A0D0 = 1/6
p_A0D1 = 1/3
p_A1D0 = 1/2
p_A1D1 = 0KL_AD = p_A0D0 * np.log(p_A0D0/(p_A0*p_D0)) + p_A0D1 * np.log(p_A0D1/(p_A0*p_D1)) + p_A1D0 * np.log(p_A1D0/(p_A1*p_D0))
KL_AD

在这里插入图片描述

A = np.array([0, 0, 0, 1, 1, 1])
D = np.array([0, 1, 1, 0, 0, 0])
mutual_info_score(D, A)

在这里插入图片描述
和信息增益最终计算结果完全一致。

卡方检验与离散变量的互信息法

在这里插入图片描述
首先也是最明显的一点,就是卡方检验能够给出明确的p值用于评估是否是小概率事件,而互信息法只能给出信息增益的计算结果,很多时候由于信息增益的计算结果是在0到最小信息熵之间取值,因此信息增益的数值在判断特征是否有效时并不如p值那么直观。

其次需要注意的是,卡方检验的p值源于假设检验统计量服从卡方分布,这种有假设分布的方法也被称为参数方法,而互信息法并不涉及任何假定的参数分布,因此是一种非参数方法。不难发现,参数方法是借助样本估计总体,然后根据总体进行推断的过程,而非参数方法则无需总体信息即可计算。尽管从方法理解层面来看非参数方法会更加简单,但这种“简单”所带来的代价,就是非参数方法无法对小样本进行合理的预估。

 卡方检验是会收到样本数量影响的,而此时卡方检验不敢下结论的原因或许并不是因为现在的A和D表现出来的关联性不够强,而是目前样本数量太少了(只有六条样本)。因此这里如果我们不改变A和D的数据分布,而仅仅将样本数量扩增至10倍,则卡方检验结果如下:在这里插入图片描述
能够发现,此时卡方检验认为当前数据情况下A1和D1相互独立就是一个非常小概率的事件了,即判断A1和D1存在显著的关联关系。但此时互信息的计算结果仍然不变。

而这将如何影响我们对这两种方法的选用呢?一般来说,对于小样本而言,卡方检验的结果可信度会高于互信息法,因此优先考虑卡方检验,而对于大样本而言,卡方检验和互信息法二者的结果其实并不会有特别大的差异,卡方检验的p值越小、互信息的值就会越大、二者关联度就越高。对于大样本数据,若最终采用模型融合策略进行建模,则最好采用不同的特征筛选方法训练不同模型,以期能达到更好的融合效果。最后,需要强调的是,如果分类变量样本偏态非常严重,也会影响互信息的结果,但不会影响卡方检验结果。

这篇关于互信息法的原理详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/598370

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

详解如何在React中执行条件渲染

《详解如何在React中执行条件渲染》在现代Web开发中,React作为一种流行的JavaScript库,为开发者提供了一种高效构建用户界面的方式,条件渲染是React中的一个关键概念,本文将深入探讨... 目录引言什么是条件渲染?基础示例使用逻辑与运算符(&&)使用条件语句列表中的条件渲染总结引言在现代

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

SQL注入漏洞扫描之sqlmap详解

《SQL注入漏洞扫描之sqlmap详解》SQLMap是一款自动执行SQL注入的审计工具,支持多种SQL注入技术,包括布尔型盲注、时间型盲注、报错型注入、联合查询注入和堆叠查询注入... 目录what支持类型how---less-1为例1.检测网站是否存在sql注入漏洞的注入点2.列举可用数据库3.列举数据库

Linux之软件包管理器yum详解

《Linux之软件包管理器yum详解》文章介绍了现代类Unix操作系统中软件包管理和包存储库的工作原理,以及如何使用包管理器如yum来安装、更新和卸载软件,文章还介绍了如何配置yum源,更新系统软件包... 目录软件包yumyum语法yum常用命令yum源配置文件介绍更新yum源查看已经安装软件的方法总结软

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例: