互信息法的原理详解

2024-01-12 15:52
文章标签 详解 原理 互信息

本文主要是介绍互信息法的原理详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 互信息法(上)
    • 互信息是什么
      • 从信息增益角度理解互信息
      • 从变量分布一致角度理解互信息
  • 卡方检验与离散变量的互信息法

互信息法(上)

尽管f_regression巧妙的构建了一个F统计量,并借此成功的借助假设检验来判断变量之间是否存在线性相关关系,但f_regression仍然存在较大局限,首当其冲当然是f_regression只能挖掘线性相关关系,也就是两个变量的同步变化关系,但除了线性关联关系外,变量之间存在其他类别的“关联关系”也是有助于模型建模,而其他类型的关系,无法被f_regression识别;其二就是由于离散变量(尤其是名义型变量)的数值大小是没有意义的,因此判断离散变量和其他变量的“线性关系”意义不大,因此f_regression只能作用于两个连续变量之间。综上所述,f_regression唯一适用的场景就是用于线性回归的连续变量特征筛选的过程中。而对于机器学习,针对于回归类问题,仅仅依靠f_regression进行连续型变量的特征筛选肯定是远远不够的。接下来我们就进一步介绍可以挖掘除了线性相关关系外的特征筛选方法:互信息法。

互信息是什么

从信息增益角度理解互信息

理解信息增益的求算过程,我们先了解一下信息熵。信息熵的计算公式:
H ( X ) = − ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) H(X) = -\sum^n_{i=1}p(x_i)log(p(x_i)) H(X)=i=1np(xi)log(p(xi))
其中, p ( x i ) p(x_i) p(xi)表示多分类问题中第 i i i个类别出现的概率, n n n表示类别总数,通常来说信息熵的计算都取底数为2,并且规定 l o g 0 = 0 log0=0 log0=0
假设有二分类数据集如下:

indexlabels
10
21
31
41

该数据集的信息增益为:
H ( X ) = − ( p ( x 1 ) l o g ( p ( x 1 ) ) + p ( x 2 ) l o g ( p ( x 2 ) ) ) = − ( 1 4 ) l o g ( 1 4 ) − ( 3 4 ) l o g ( 3 4 ) \begin{aligned} H(X) &= -(p(x_1)log(p(x_1))+p(x_2)log(p(x_2))) \\ &=-(\frac{1}{4})log(\frac{1}{4})-(\frac{3}{4})log(\frac{3}{4}) \end{aligned} H(X)=(p(x1)log(p(x1))+p(x2)log(p(x2)))=(41)log(41)(43)log(43)

-1/4 * np.log2(1/4) - 3/4 * np.log2(3/4)

在这里插入图片描述

#也可以借助scipy中的stats.entropy函数来完成信息熵的计算
scipy.stats.entropy([1/4, 3/4], base=2)#base等于2,表示log以2为底

在这里插入图片描述
如现有简单数组如下,在按照特征对标签进行分组后,各数据集的信息熵计算结果如下:

在这里插入图片描述

# 原数据集信息熵
ent_A = 0.918# 子数据集整体信息熵,各个子数据集信息熵加权求和
ent_B = 1/2 * 0.918 + 1/2 * 0#计算信息增益
gain = ent_A - ent_B
gain

在这里插入图片描述
而这也是ID 3决策树的基本建树流程,即找到最能够降低子数据集标签不纯度的特征对数据集进行划分,而这里的信息增益,其实也就是这个降低不纯度的量化的指标。

互信息的解释: 参考视频

所以从本质上来讲,互信息就是信息增益

所以为什么树模型以及以树模型为弱分类器的集成算法可以不进行特征筛选?
不难发现,原因是树模型的生长过程其实是会自动选取信息增益最大的列进行数据集划分(即树的生长)特征筛选的(CART树也有类似过程,只不过更换了信息熵为基尼系数)

互信息这一指标的实际作用,确实能够挑选出能有效帮助模型建模的特征。而互信息法的本质,我们也可以将其理解为一个剥离决策树模型训练、单纯只对每个特征进行互信息计算、然后根据互信息进行挑选特征的过程。

我们也可以借助sklearn中的相关函数来更加自动化的执行互信息的计算,对于上述分类变量的互信息计算过程,可以借助sklearn中评估函数的mutual_info_score来完成计算:

from sklearn.metrics import mutual_info_score
A = np.array([0, 0, 0, 1, 1, 1])
D = np.array([0, 1, 1, 0, 0, 0])
mutual_info_score(A, D)
mutual_info_score(D, A)

在这里插入图片描述

这里需要说明的两点是:

  1. mutual_info_score(A,D)和mutual_info_score(D,A)的计算结果是一样的,这是因为互信息具有对称性,用A解释D,也可以用D解释A;
  2. sklearn中互信息的计算是以e为底的

从变量分布一致角度理解互信息

在这里插入图片描述
假设有下面数据表:

特征A标签D
00
01
01
10
10
10
p_A0 = 1/2
p_A1 = 1/2
p_D0 = 2/3
p_D1 = 1/3p_A0D0 = 1/6
p_A0D1 = 1/3
p_A1D0 = 1/2
p_A1D1 = 0KL_AD = p_A0D0 * np.log(p_A0D0/(p_A0*p_D0)) + p_A0D1 * np.log(p_A0D1/(p_A0*p_D1)) + p_A1D0 * np.log(p_A1D0/(p_A1*p_D0))
KL_AD

在这里插入图片描述

A = np.array([0, 0, 0, 1, 1, 1])
D = np.array([0, 1, 1, 0, 0, 0])
mutual_info_score(D, A)

在这里插入图片描述
和信息增益最终计算结果完全一致。

卡方检验与离散变量的互信息法

在这里插入图片描述
首先也是最明显的一点,就是卡方检验能够给出明确的p值用于评估是否是小概率事件,而互信息法只能给出信息增益的计算结果,很多时候由于信息增益的计算结果是在0到最小信息熵之间取值,因此信息增益的数值在判断特征是否有效时并不如p值那么直观。

其次需要注意的是,卡方检验的p值源于假设检验统计量服从卡方分布,这种有假设分布的方法也被称为参数方法,而互信息法并不涉及任何假定的参数分布,因此是一种非参数方法。不难发现,参数方法是借助样本估计总体,然后根据总体进行推断的过程,而非参数方法则无需总体信息即可计算。尽管从方法理解层面来看非参数方法会更加简单,但这种“简单”所带来的代价,就是非参数方法无法对小样本进行合理的预估。

 卡方检验是会收到样本数量影响的,而此时卡方检验不敢下结论的原因或许并不是因为现在的A和D表现出来的关联性不够强,而是目前样本数量太少了(只有六条样本)。因此这里如果我们不改变A和D的数据分布,而仅仅将样本数量扩增至10倍,则卡方检验结果如下:在这里插入图片描述
能够发现,此时卡方检验认为当前数据情况下A1和D1相互独立就是一个非常小概率的事件了,即判断A1和D1存在显著的关联关系。但此时互信息的计算结果仍然不变。

而这将如何影响我们对这两种方法的选用呢?一般来说,对于小样本而言,卡方检验的结果可信度会高于互信息法,因此优先考虑卡方检验,而对于大样本而言,卡方检验和互信息法二者的结果其实并不会有特别大的差异,卡方检验的p值越小、互信息的值就会越大、二者关联度就越高。对于大样本数据,若最终采用模型融合策略进行建模,则最好采用不同的特征筛选方法训练不同模型,以期能达到更好的融合效果。最后,需要强调的是,如果分类变量样本偏态非常严重,也会影响互信息的结果,但不会影响卡方检验结果。

这篇关于互信息法的原理详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/598370

相关文章

十四、观察者模式与访问者模式详解

21.观察者模式 21.1.课程目标 1、 掌握观察者模式和访问者模式的应用场景。 2、 掌握观察者模式在具体业务场景中的应用。 3、 了解访问者模式的双分派。 4、 观察者模式和访问者模式的优、缺点。 21.2.内容定位 1、 有 Swing开发经验的人群更容易理解观察者模式。 2、 访问者模式被称为最复杂的设计模式。 21.3.观察者模式 观 察 者 模 式 ( Obser

【操作系统】信号Signal超详解|捕捉函数

🔥博客主页: 我要成为C++领域大神🎥系列专栏:【C++核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ 如何触发信号 信号是Linux下的经典技术,一般操作系统利用信号杀死违规进程,典型进程干预手段,信号除了杀死进程外也可以挂起进程 kill -l 查看系统支持的信号

Jitter Injection详解

一、定义与作用 Jitter Injection,即抖动注入,是一种在通信系统中人为地添加抖动的技术。该技术通过在发送端对数据包进行延迟和抖动调整,以实现对整个通信系统的时延和抖动的控制。其主要作用包括: 改善传输质量:通过调整数据包的时延和抖动,可以有效地降低误码率,提高数据传输的可靠性。均衡网络负载:通过对不同的数据流进行不同程度的抖动注入,可以实现网络资源的合理分配,提高整体传输效率。增

Steam邮件推送内容有哪些?配置教程详解!

Steam邮件推送功能是否安全?如何个性化邮件推送内容? Steam作为全球最大的数字游戏分发平台之一,不仅提供了海量的游戏资源,还通过邮件推送为用户提供最新的游戏信息、促销活动和个性化推荐。AokSend将详细介绍Steam邮件推送的主要内容。 Steam邮件推送:促销优惠 每当平台举办大型促销活动,如夏季促销、冬季促销、黑色星期五等,用户都会收到邮件通知。这些邮件详细列出了打折游戏、

探索Elastic Search:强大的开源搜索引擎,详解及使用

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 引入 全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 Elastic)是目前全文搜索引擎的首选,相信大家多多少少的都听说过它。它可以快速地储存、搜索和分析海量数据。就连维基百科、Stack Overflow、

数据库原理与安全复习笔记(未完待续)

1 概念 产生与发展:人工管理阶段 → \to → 文件系统阶段 → \to → 数据库系统阶段。 数据库系统特点:数据的管理者(DBMS);数据结构化;数据共享性高,冗余度低,易于扩充;数据独立性高。DBMS 对数据的控制功能:数据的安全性保护;数据的完整性检查;并发控制;数据库恢复。 数据库技术研究领域:数据库管理系统软件的研发;数据库设计;数据库理论。数据模型要素 数据结构:描述数据库

常用MQ消息中间件Kafka、ZeroMQ和RabbitMQ对比及RabbitMQ详解

1、概述   在现代的分布式系统和实时数据处理领域,消息中间件扮演着关键的角色,用于解决应用程序之间的通信和数据传递的挑战。在众多的消息中间件解决方案中,Kafka、ZeroMQ和RabbitMQ 是备受关注和广泛应用的代表性系统。它们各自具有独特的特点和优势,适用于不同的应用场景和需求。   Kafka 是一个高性能、可扩展的分布式消息队列系统,被设计用于处理大规模的数据流和实时数据传输。它

计算机组成原理——RECORD

第一章 概论 1.固件  将部分操作系统固化——即把软件永恒存于只读存储器中。 2.多级层次结构的计算机系统 3.冯*诺依曼计算机的特点 4.现代计算机的组成:CPU、I/O设备、主存储器(MM) 5.细化的计算机组成框图 6.指令操作的三个阶段:取指、分析、执行 第二章 计算机的发展 1.第一台由电子管组成的电子数字积分和计算机(ENIAC) 第三章 系统总线

Linux中拷贝 cp命令中拷贝所有的写法详解

This text from: http://www.jb51.net/article/101641.htm 一、预备  cp就是拷贝,最简单的使用方式就是: cp oldfile newfile 但这样只能拷贝文件,不能拷贝目录,所以通常用: cp -r old/ new/ 那就会把old目录整个拷贝到new目录下。注意,不是把old目录里面的文件拷贝到new目录,

GaussDB关键技术原理:高性能(二)

GaussDB关键技术原理:高性能(一)从数据库性能优化系统概述对GaussDB的高性能技术进行了解读,本篇将从查询处理综述方面继续分享GaussDB的高性能技术的精彩内容。 2 查询处理综述 内容概要:本章节介绍查询端到端处理的执行流程,首先让读者对查询在数据库内部如何执行有一个初步的认识,充分理解查询处理各阶段主要瓶颈点以及对应的解决方案,本章以GaussDB为例讲解查询执行的几个主要阶段