github上的python图片转excel,pytesseract安装相关问题

2024-01-12 15:20

本文主要是介绍github上的python图片转excel,pytesseract安装相关问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题1:明明都pip install pytesseract,但是就是安装不上

pytesseract 未安装

链接: https://pan.baidu.com/s/1I4HzCgO4mITWTcZFkdil6g?pwd=afes 提取码: afes

安装后一路next,然后配置环境变量

C:\Program Files\Tesseract-OCR

在这里插入图片描述

新建一个系统变量
在这里插入图片描述

问题2:程序如果报错信息:

 Error opening data file D:\\Tesseract-OCR/tessdata/chi_sim.traineddata

通过如下路径下载模型:https://github.com/tesseract-ocr/tessdata/blob/main/chi_sim.traineddata

存储到tessdata目录下,再次运行,程序成功执行。

python图片转excel

在这里插入图片描述
在这里插入图片描述
我的运行效果不是太好,好像说要训练什么的,我在代码中加了一行避免报错

    if len(item) >= 6:
脚本思路大致是:

使用OpenCV (cv2)读取图像文件。
将图像转换为灰度图,并应用自适应阈值处理,生成二值图像。
使用形态学运算识别表格的水平和垂直线。
检测线的交点,定位表格的单元格。
使用Tesseract OCR (pytesseract)从每个单元格提取文本。
清理提取的文本,去除特殊字符。
将提取的数据写入CSV文件。

import osimport cv2
import numpy as np
import pytesseract
from PIL import Image
import csv
import re
import jsondef parse_pic_to_excel_data(src):raw = cv2.imread(src, 1)# 灰度图片gray = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)# 二值化binary = cv2.adaptiveThreshold(~gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 35, -5)cv2.imshow("binary_picture", binary)  # 展示图片rows, cols = binary.shapescale = 40# 自适应获取核值 识别横线kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (cols // scale, 1))eroded = cv2.erode(binary, kernel, iterations=1)dilated_col = cv2.dilate(eroded, kernel, iterations=1)cv2.imshow("excel_horizontal_line", dilated_col)# cv2.waitKey(0)# 识别竖线scale = 20kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, rows // scale))eroded = cv2.erode(binary, kernel, iterations=1)dilated_row = cv2.dilate(eroded, kernel, iterations=1)cv2.imshow("excel_vertical_line", dilated_row)# cv2.waitKey(0)# 标识交点bitwise_and = cv2.bitwise_and(dilated_col, dilated_row)cv2.imshow("excel_bitwise_and", bitwise_and)# cv2.waitKey(0)# 标识表格merge = cv2.add(dilated_col, dilated_row)cv2.imshow("entire_excel_contour", merge)# cv2.waitKey(0)# 两张图片进行减法运算,去掉表格框线merge2 = cv2.subtract(binary, merge)cv2.imshow("binary_sub_excel_rect", merge2)new_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))erode_image = cv2.morphologyEx(merge2, cv2.MORPH_OPEN, new_kernel)cv2.imshow('erode_image2', erode_image)merge3 = cv2.add(erode_image, bitwise_and)cv2.imshow('merge3', merge3)# cv2.waitKey(0)# 识别黑白图中的白色交叉点,将横纵坐标取出ys, xs = np.where(bitwise_and > 0)# 纵坐标y_point_arr = []# 横坐标x_point_arr = []# 通过排序,获取跳变的x和y的值,说明是交点,否则交点会有好多像素值值相近,我只取相近值的最后一点# 这个10的跳变不是固定的,根据不同的图片会有微调,基本上为单元格表格的高度(y坐标跳变)和长度(x坐标跳变)i = 0sort_x_point = np.sort(xs)for i in range(len(sort_x_point) - 1):if sort_x_point[i + 1] - sort_x_point[i] > 10:x_point_arr.append(sort_x_point[i])i = i + 1x_point_arr.append(sort_x_point[i])  # 要将最后一个点加入i = 0sort_y_point = np.sort(ys)# print(np.sort(ys))for i in range(len(sort_y_point) - 1):if (sort_y_point[i + 1] - sort_y_point[i] > 10):y_point_arr.append(sort_y_point[i])i = i + 1# 要将最后一个点加入y_point_arr.append(sort_y_point[i])print('y_point_arr', y_point_arr)print('x_point_arr', x_point_arr)# 循环y坐标,x坐标分割表格data = [[] for i in range(len(y_point_arr))]for i in range(len(y_point_arr) - 1):for j in range(len(x_point_arr) - 1):# 在分割时,第一个参数为y坐标,第二个参数为x坐标cell = raw[y_point_arr[i]:y_point_arr[i + 1], x_point_arr[j]:x_point_arr[j + 1]]cv2.imshow("sub_pic" + str(i) + str(j), cell)# 读取文字,此为默认英文# pytesseract.pytesseract.tesseract_cmd = 'E:/Tesseract-OCR/tesseract.exe'text1 = pytesseract.image_to_string(cell, lang="chi_sim")# 去除特殊字符text1 = re.findall(r'[^\*"/:?\\|<>″′‖ 〈\n]', text1, re.S)text1 = "".join(text1)print('单元格图片信息:' + text1)data[i].append(text1)j = j + 1i = i + 1# cv2.waitKey(0)return datadef write_csv(path, data):with open(path, "w", newline='') as csv_file:writer = csv.writer(csv_file, dialect='excel')for item in data:# Check if the item list has at least 6 elements before accessing themif len(item) >= 6:writer.writerow([item[0], item[1], item[2], item[3], item[4], item[5]])if __name__ == '__main__':file = "classTable.png"# 解析数据data = parse_pic_to_excel_data(file)# 写入excelwrite_csv(file.replace(".png", ".csv"), data)

下面是原作者写的博客

https://blog.csdn.net/sc9018181134/article/details/104577247

这篇关于github上的python图片转excel,pytesseract安装相关问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/598287

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

如何在Mac上安装并配置JDK环境变量详细步骤

《如何在Mac上安装并配置JDK环境变量详细步骤》:本文主要介绍如何在Mac上安装并配置JDK环境变量详细步骤,包括下载JDK、安装JDK、配置环境变量、验证JDK配置以及可选地设置PowerSh... 目录步骤 1:下载JDK步骤 2:安装JDK步骤 3:配置环境变量1. 编辑~/.zshrc(对于zsh

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo