github上的python图片转excel,pytesseract安装相关问题

2024-01-12 15:20

本文主要是介绍github上的python图片转excel,pytesseract安装相关问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题1:明明都pip install pytesseract,但是就是安装不上

pytesseract 未安装

链接: https://pan.baidu.com/s/1I4HzCgO4mITWTcZFkdil6g?pwd=afes 提取码: afes

安装后一路next,然后配置环境变量

C:\Program Files\Tesseract-OCR

在这里插入图片描述

新建一个系统变量
在这里插入图片描述

问题2:程序如果报错信息:

 Error opening data file D:\\Tesseract-OCR/tessdata/chi_sim.traineddata

通过如下路径下载模型:https://github.com/tesseract-ocr/tessdata/blob/main/chi_sim.traineddata

存储到tessdata目录下,再次运行,程序成功执行。

python图片转excel

在这里插入图片描述
在这里插入图片描述
我的运行效果不是太好,好像说要训练什么的,我在代码中加了一行避免报错

    if len(item) >= 6:
脚本思路大致是:

使用OpenCV (cv2)读取图像文件。
将图像转换为灰度图,并应用自适应阈值处理,生成二值图像。
使用形态学运算识别表格的水平和垂直线。
检测线的交点,定位表格的单元格。
使用Tesseract OCR (pytesseract)从每个单元格提取文本。
清理提取的文本,去除特殊字符。
将提取的数据写入CSV文件。

import osimport cv2
import numpy as np
import pytesseract
from PIL import Image
import csv
import re
import jsondef parse_pic_to_excel_data(src):raw = cv2.imread(src, 1)# 灰度图片gray = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)# 二值化binary = cv2.adaptiveThreshold(~gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 35, -5)cv2.imshow("binary_picture", binary)  # 展示图片rows, cols = binary.shapescale = 40# 自适应获取核值 识别横线kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (cols // scale, 1))eroded = cv2.erode(binary, kernel, iterations=1)dilated_col = cv2.dilate(eroded, kernel, iterations=1)cv2.imshow("excel_horizontal_line", dilated_col)# cv2.waitKey(0)# 识别竖线scale = 20kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, rows // scale))eroded = cv2.erode(binary, kernel, iterations=1)dilated_row = cv2.dilate(eroded, kernel, iterations=1)cv2.imshow("excel_vertical_line", dilated_row)# cv2.waitKey(0)# 标识交点bitwise_and = cv2.bitwise_and(dilated_col, dilated_row)cv2.imshow("excel_bitwise_and", bitwise_and)# cv2.waitKey(0)# 标识表格merge = cv2.add(dilated_col, dilated_row)cv2.imshow("entire_excel_contour", merge)# cv2.waitKey(0)# 两张图片进行减法运算,去掉表格框线merge2 = cv2.subtract(binary, merge)cv2.imshow("binary_sub_excel_rect", merge2)new_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))erode_image = cv2.morphologyEx(merge2, cv2.MORPH_OPEN, new_kernel)cv2.imshow('erode_image2', erode_image)merge3 = cv2.add(erode_image, bitwise_and)cv2.imshow('merge3', merge3)# cv2.waitKey(0)# 识别黑白图中的白色交叉点,将横纵坐标取出ys, xs = np.where(bitwise_and > 0)# 纵坐标y_point_arr = []# 横坐标x_point_arr = []# 通过排序,获取跳变的x和y的值,说明是交点,否则交点会有好多像素值值相近,我只取相近值的最后一点# 这个10的跳变不是固定的,根据不同的图片会有微调,基本上为单元格表格的高度(y坐标跳变)和长度(x坐标跳变)i = 0sort_x_point = np.sort(xs)for i in range(len(sort_x_point) - 1):if sort_x_point[i + 1] - sort_x_point[i] > 10:x_point_arr.append(sort_x_point[i])i = i + 1x_point_arr.append(sort_x_point[i])  # 要将最后一个点加入i = 0sort_y_point = np.sort(ys)# print(np.sort(ys))for i in range(len(sort_y_point) - 1):if (sort_y_point[i + 1] - sort_y_point[i] > 10):y_point_arr.append(sort_y_point[i])i = i + 1# 要将最后一个点加入y_point_arr.append(sort_y_point[i])print('y_point_arr', y_point_arr)print('x_point_arr', x_point_arr)# 循环y坐标,x坐标分割表格data = [[] for i in range(len(y_point_arr))]for i in range(len(y_point_arr) - 1):for j in range(len(x_point_arr) - 1):# 在分割时,第一个参数为y坐标,第二个参数为x坐标cell = raw[y_point_arr[i]:y_point_arr[i + 1], x_point_arr[j]:x_point_arr[j + 1]]cv2.imshow("sub_pic" + str(i) + str(j), cell)# 读取文字,此为默认英文# pytesseract.pytesseract.tesseract_cmd = 'E:/Tesseract-OCR/tesseract.exe'text1 = pytesseract.image_to_string(cell, lang="chi_sim")# 去除特殊字符text1 = re.findall(r'[^\*"/:?\\|<>″′‖ 〈\n]', text1, re.S)text1 = "".join(text1)print('单元格图片信息:' + text1)data[i].append(text1)j = j + 1i = i + 1# cv2.waitKey(0)return datadef write_csv(path, data):with open(path, "w", newline='') as csv_file:writer = csv.writer(csv_file, dialect='excel')for item in data:# Check if the item list has at least 6 elements before accessing themif len(item) >= 6:writer.writerow([item[0], item[1], item[2], item[3], item[4], item[5]])if __name__ == '__main__':file = "classTable.png"# 解析数据data = parse_pic_to_excel_data(file)# 写入excelwrite_csv(file.replace(".png", ".csv"), data)

下面是原作者写的博客

https://blog.csdn.net/sc9018181134/article/details/104577247

这篇关于github上的python图片转excel,pytesseract安装相关问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/598287

相关文章

Python实现文件下载、Cookie以及重定向的方法代码

《Python实现文件下载、Cookie以及重定向的方法代码》本文主要介绍了如何使用Python的requests模块进行网络请求操作,涵盖了从文件下载、Cookie处理到重定向与历史请求等多个方面,... 目录前言一、下载网络文件(一)基本步骤(二)分段下载大文件(三)常见问题二、requests模块处理

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常