【深度学习介绍系列之三】——十个值得一试的开源深度学习框架

2024-01-12 12:18

本文主要是介绍【深度学习介绍系列之三】——十个值得一试的开源深度学习框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址:点击打开链接      作者:Cashcow

本周早些时候Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索引擎都在使用自行研发的深度学习工具。

无疑,来自Google军火库的TensorFlow必然是开源深度学习软件中的明星产品,登陆GitHub当天就成为最受关注的项目,当周获得评星数就轻松超过1万个。

对于希望在应用中整合深度学习功能的开发者来说,GitHub上其实还有很多不错的开源项目值得关注,首先我们推荐目前规模人气最高的TOP3:

一、Caffe。源自加州伯克利分校的Caffe被广泛应用,包括Pinterest这样的web大户。与TensorFlow一样,Caffe也是由C++开发,Caffe也是Google今年早些时候发布的DeepDream项目(可以识别喵星人的人工智能神经网络)的基础。

 

二、Theano。2008年诞生于蒙特利尔理工学院,Theano派生出了大量深度学习Python软件包,最著名的包括Blocks和Keras。

 

三、Torch。Torch诞生已经有十年之久,但是真正起势得益于去年Facebook开源了大量Torch的深度学习模块和扩展。Torch另外一个特殊之处是采用了不怎么流行的编程语言Lua(该语言曾被用来开发视频游戏)。

 

除了以上三个比较成熟知名的项目,还有很多有特色的深度学习开源框架也值得关注:

 

四、Brainstorm。来自瑞士人工智能实验室IDSIA的一个非常发展前景很不错的深度学习软件包,Brainstorm能够处理上百层的超级深度神经网络——所谓的公路网络Highway Networks。

 

五、Chainer。来自一个日本的深度学习创业公司Preferred Networks,今年6月发布的一个Python框架。Chainer的设计基于define by run原则,也就是说,该网络在运行中动态定义,而不是在启动时定义,这里有Chainer的详细文档。

 

六、Deeplearning4j。顾名思义,Deeplearning4j是”for Java”的深度学习框架,也是首个商用级别的深度学习开源库。Deeplearning4j由创业公司Skymind于2014年6月发布,使用Deeplearning4j的不乏埃森哲、雪弗兰、博斯咨询和IBM等明星企业。

DeepLearning4j是一个面向生产环境和商业应用的高成熟度深度学习开源库,可与Hadoop和Spark集成,即插即用,方便开发者在APP中快速集成深度学习功能,可应用于以下深度学习领域:

  • 人脸/图像识别
  • 语音搜索
  • 语音转文字(Speech to text)
  • 垃圾信息过滤(异常侦测)
  • 电商欺诈侦测

 

七、Marvin。是普林斯顿大学视觉工作组新推出的C++框架。该团队还提供了一个文件用于将Caffe模型转化成语Marvin兼容的模式。

 

八、ConvNetJS。这是斯坦福大学博士生Andrej Karpathy开发浏览器插件,基于万能的JavaScript可以在你的游览器中训练神经网络。Karpathy还写了一个ConvNetJS的入门教程,以及一个简洁的浏览器演示项目。

 

九、MXNet。出自CXXNet、Minerva、Purine等项目的开发者之手,主要用C++编写。MXNet强调提高内存使用的效率,甚至能在智能手机上运行诸如图像识别等任务。

 

十、Neon。由创业公司Nervana Systems于今年五月开源,在某些基准测试中,由Python和Sass开发的Neon的测试成绩甚至要优于Caffeine、Torch和谷歌的TensorFlow。



这篇关于【深度学习介绍系列之三】——十个值得一试的开源深度学习框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597846

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Python实现html转png的完美方案介绍

《Python实现html转png的完美方案介绍》这篇文章主要为大家详细介绍了如何使用Python实现html转png功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 1.增强稳定性与错误处理建议使用三层异常捕获结构:try: with sync_playwright(

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir