Mingw32编译opencv库

2024-01-12 00:04
文章标签 编译 opencv mingw32

本文主要是介绍Mingw32编译opencv库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 准备工作
  • 2. 编译
    • cmake构建程序
    • mingw32-make编译
  • 3. 安装
  • 4. 安装完的结果

注意:
mingw32-make编译的库和MSVC编译的库不兼容,MSVC和mingw-make生成的动态库使用的是不同的ABI(Application Binary Interface),不能混合使用由这两个编译器生成的库。例如,如果你的程序使用了由MSVC编译的库,那么你的程序也必须使用MSVC来编译。另外mingw32-make编译的库的库文件是.a后缀,MSVC编译的库的库文件是.lib。

1. 准备工作

  • 安装cmake
    参考

  • 安装mingw32
    参考

  • 下载opencv源码
    下载地址:https://codeload.github.com/opencv/opencv/zip/refs/tags/4.6.0
    下载后解压。

2. 编译

cmake构建程序

  • 进入opencv源码目录
  • 新建build目录
  • 进入build目录
  • 执行cmake命令
D:\myApp\opencv460\opencv-4.6.0>mkdir buildD:\myApp\opencv460\opencv-4.6.0>cd buildD:\myApp\opencv460\opencv-4.6.0\build>cmake .. -G "MinGW Makefiles" -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=D:\myApp\opencv460\opencv-4.6.0\build -D BUILD_opencv_world=ON
-- The CXX compiler identification is GNU 13.2.0
-- The C compiler identification is GNU 13.2.0
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Check for working CXX compiler: D:/myApp/mingw64/bin/c++.exe - skipped
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: D:/myApp/mingw64/bin/gcc.exe - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- ocv_init_download: OpenCV source tree is not fetched as git repository. 3rdparty resources will be downloaded from github.com by default.
-- Detected processor: AMD64
CMake Warning (dev) at cmake/OpenCVUtils.cmake:144 (find_package):Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modulesare removed.  Run "cmake --help-policy CMP0148" for policy details.  Usethe cmake_policy command to set the policy and suppress this warning.Call Stack (most recent call first):cmake/OpenCVDetectPython.cmake:64 (find_host_package)cmake/OpenCVDetectPython.cmake:271 (find_python)CMakeLists.txt:628 (include)
This warning is for project developers.  Use -Wno-dev to suppress it.-- Found PythonInterp: D:/myApp/anaconda3/python.exe (found suitable version "3.11.5", minimum required is "2.7")
CMake Warning at cmake/OpenCVDetectPython.cmake:81 (message):CMake's 'find_host_package(PythonInterp 2.7)' found wrong Python version:PYTHON_EXECUTABLE=D:/myApp/anaconda3/python.exePYTHON_VERSION_STRING=3.11.5Consider providing the 'PYTHON2_EXECUTABLE' variable via CMake command lineor environment variablesCall Stack (most recent call first):cmake/OpenCVDetectPython.cmake:271 (find_python)CMakeLists.txt:628 (include)。。。。。。。。。。。。。。。。。。。。

上面关键的指令是这一句:

cmake .. -G "MinGW Makefiles" -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=D:\myApp\opencv460\opencv-4.6.0\build -D BUILD_opencv_world=ON

解释一下:

  • … 表示上一级目录,即opencv源码目录
  • -G “MinGW Makefiles” 表示生成MinGW Makefiles工程
  • -D CMAKE_BUILD_TYPE=RELEASE 表示编译类型为RELEASE
  • -D CMAKE_INSTALL_PREFIX=D:\myApp\opencv460\opencv-4.6.0\build 表示安装目录
  • -D BUILD_opencv_world=ON 表示编译opencv_world库

mingw32-make编译

  • 执行mingw32-make命令
mingw32-make -j8

输出如下:

D:\myApp\opencv460\opencv-4.6.0\build>mingw32-make -j 8
[  0%] Built target opencv_videoio_plugins
[  0%] Building C object 3rdparty/openjpeg/openjp2/CMakeFiles/libopenjp2.dir/thread.c.obj
[  0%] Built target opencv_highgui_plugins
[  0%] Building CXX object CMakeFiles/ade.dir/3rdparty/ade/ade-0.1.1f/sources/ade/source/alloc.cpp.obj
[  0%] Building C object 3rdparty/quirc/CMakeFiles/quirc.dir/src/decode.c.obj
[  0%] Building C object 3rdparty/zlib/CMakeFiles/zlib.dir/adler32.c.obj
[  0%] Building C object 3rdparty/libjpeg-turbo/CMakeFiles/libjpeg-turbo.dir/src/jcapimin.c.obj
[  0%] Building C object 3rdparty/libwebp/CMakeFiles/libwebp.dir/src/dec/alpha_dec.c.obj
[  0%] Building C object 3rdparty/openjpeg/openjp2/CMakeFiles/libopenjp2.dir/bio.c.obj
[  0%] Building C object 3rdparty/quirc/CMakeFiles/quirc.dir/src/quirc.c.obj

note: -j8 表示8个线程编译,可以根据自己的电脑配置来设置。
如果报错如下

D:/myApp/opencv460/opencv-4.6.0/build/3rdparty/ade/ade-0.1.1f/sources/ade/include/ade/typed_graph.hpp:101:10: error:
'uintptr_t' in namespace 'std' does not name a type101 |     std::uintptr_t m_srcGraph;|          ^~~~~~~~~
D:/myApp/opencv460/opencv-4.6.0/build/3rdparty/ade/ade-0.1.1f/sources/ade/include/ade/typed_graph.hpp:22:1: note: 'std::uintptr_t' is defined in header '<cstdint>'; did you forget to '#include <cstdint>'?21 | #include "typed_metadata.hpp"+++ |+#include <cstdint>

这是因为ade库用到了std::uintptr_t,std::uintptr_t在cstdint头文件中。但是它没有包含cstdint头文件,需要手动添加。(编译报错的提示还是很有用的)

3. 安装

mingw32-make install
D:\myApp\opencv460\opencv-4.6.0\build>mingw32-make install
[  0%] Built target opencv_highgui_plugins
[  2%] Built target libopenjp2
[  2%] Built target opencv_videoio_plugins
[  3%] Built target zlib
[  9%] Built target opencv_core
[ 15%] Built target opencv_imgproc
[ 18%] Built target libjpeg-turbo
[ 25%] Built target libwebp
[ 28%] Built target libtiff
[ 29%] Built target libpng
[ 35%] Built target IlmImf
[ 36%] Built target opencv_imgcodecs
[ 37%] Built target opencv_videoio
[ 37%] Built target opencv_highgui
[ 37%] Built target opencv_ts
[ 40%] Built target opencv_test_core
[ 42%] Built target opencv_perf_core
[ 42%] Built target opencv_flann
[ 42%] Built target opencv_test_flann
[ 46%] Built target opencv_test_imgproc
[ 48%] Built target opencv_perf_imgproc
[ 49%] Built target opencv_ml
[ 50%] Built target opencv_test_ml
[ 51%] Built target opencv_photo
[ 52%] Built target opencv_test_photo
[ 53%] Built target opencv_perf_photo
[ 55%] Built target libprotobuf
[ 64%] Built target opencv_dnn
[ 65%] Built target opencv_test_dnn
[ 65%] Built target opencv_perf_dnn
[ 67%] Built target opencv_features2d
[ 68%] Built target opencv_test_features2d
[ 69%] Built target opencv_perf_features2d
[ 69%] Built target opencv_test_imgcodecs
[ 69%] Built target opencv_perf_imgcodecs
[ 70%] Built target opencv_test_videoio
[ 70%] Built target opencv_perf_videoio
[ 73%] Built target opencv_calib3d
[ 75%] Built target opencv_test_calib3d
[ 76%] Built target opencv_perf_calib3d
[ 76%] Built target opencv_test_highgui
[ 77%] Built target quirc
[ 78%] Built target opencv_objdetect
[ 78%] Built target opencv_test_objdetect
[ 78%] Built target opencv_perf_objdetect
[ 79%] Built target opencv_stitching
[ 79%] Built target opencv_test_stitching
[ 79%] Built target opencv_perf_stitching
[ 80%] Built target opencv_video
[ 81%] Built target opencv_test_video
[ 82%] Built target opencv_perf_video
[ 83%] Built target ade
[ 91%] Built target opencv_gapi
[ 97%] Built target opencv_test_gapi
[ 98%] Built target opencv_perf_gapi
[ 98%] Built target gen_opencv_python_source
[ 99%] Built target opencv_python3
[ 99%] Built target opencv_annotation
[ 99%] Built target opencv_visualisation
[ 99%] Built target opencv_interactive-calibration
[100%] Built target opencv_version
[100%] Built target opencv_version_win32
[100%] Built target opencv_model_diagnostics
Install the project...
-- Install configuration: "Release"
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/opencl-headers-LICENSE.txt
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/ade-LICENSE
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/ffmpeg-license.txt
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/ffmpeg-readme.txt
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/include/opencv2/cvconfig.h
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/include/opencv2/opencv_modules.hpp
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/x64/mingw/lib/OpenCVModules.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/x64/mingw/lib/OpenCVModules-release.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/x64/mingw/lib/OpenCVConfig-version.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/x64/mingw/lib/OpenCVConfig.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/./OpenCVConfig-version.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/./OpenCVConfig.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/./LICENSE
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/./setup_vars_opencv4.cmd
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/zlib-README
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libjpeg-turbo-README.md
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libjpeg-turbo-LICENSE.md
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libjpeg-turbo-README.ijg
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libtiff-COPYRIGHT
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libopenjp2-README.md
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libopenjp2-LICENSE
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libpng-LICENSE
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libpng-README
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/openexr-LICENSE
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/openexr-AUTHORS.ilmbase
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/openexr-AUTHORS.openexr

4. 安装完的结果

在这里插入图片描述

这篇关于Mingw32编译opencv库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/596145

相关文章

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

idea maven编译报错Java heap space的解决方法

《ideamaven编译报错Javaheapspace的解决方法》这篇文章主要为大家详细介绍了ideamaven编译报错Javaheapspace的相关解决方法,文中的示例代码讲解详细,感兴趣的... 目录1.增加 Maven 编译的堆内存2. 增加 IntelliJ IDEA 的堆内存3. 优化 Mave

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j