计算框架相关的编译器知识(XLA, nGraph)

2024-01-11 09:38

本文主要是介绍计算框架相关的编译器知识(XLA, nGraph),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tensorflow XLA的加速原理主要是融合Kernel

def  model_fn(x,y,z):    return tf.reduce_sum(x + y * z)  

如果运行模型时不使用 XLA,图表会启动三个内核,分别用于乘法、加法和减法。

官网原话:XLA 可以优化计算图,将加法、乘法和减法 “融合” 到单个 GPU Kernel中。此外,这种融合运算不会将 y*z 和 x+y*z 生成的中间值写入内存,而是将这些中间计算的结果直接 “流式传输” 给用户,并完整保存在 GPU 寄存器中。融合是 XLA 最重要的一种优化方式。内存带宽通常是硬件加速器上最稀缺的资源,因此删除内存运算是提升性能的最佳方法之一。

我的理解:计算融合到一个Kernel,减少Kernel启动次数,减少中间结果来回读写显存次数

Tensorflow使用XLA比不使用,在大部分模型下,能有10%~50%左右的加速提升;可以用户自己指定哪些操作做XLA编译优化,也可以让系统自动去找可优化的地方自动进行XLA优化;

AOT方式和JIT方式

两种方式下都会将整个计算图或则计算图的一部分直接编译成可执行代码。两则的区别也是比较明显的,除了编译时机不一样(AOT计算图在不会在运行阶段前被编译成可执行代码,JIT是在进入运行阶段后的适当的时机才会被编译成可执行代码),还有就是runtime(运行时)的参与程度。AOT中彻底不需要运行时的参与了,而JIT中还是需要运行时参与的,但是JIT会优化融合原计算图中的节点,加入XlaLaunch节点,来加速计算图的执行。

经典LLVM编译器架构:(扩展性支持好,即插即用的前端和后端)

Tensorflow的XLA架构(类似LLVM):

 

TVM

 

nGraph

原理上没有新东西提出来,只是提出了nGraph IR(Intermediate Representation),又一种DL IR。这些工作不外乎又是把问题变为了编译器的问题的又一种展现。

Tensorflow Model / ONNX / Caffe Model / ... ---> DL IR (nGraph IR / *.IR) ---> LLVM IR ---> CPU JIT / GPU / ...

如果把前面的Model看成一种语言或者DSL,就是DSL ---> DL IR ---> LLVM IR ---> Target ,然后你就在中间层疯狂的做优化,编译器优化开发也是这样做的。

在LLVM IR出现以前,很多编译器都有几层的IR表示,比如 C++ ----> 1st IR ----> OPT ----> 2nd IR ----> .... -> Target,只是LLVM出来以后,LLVM IR做了统一,编译器变为了 C++ ----> LLVM IR ---> OPT ----> LLVM IR ----> Target

在DL IR没有统一之前,我相信业界还会重复造轮子,然后来证明我的DL IR是最好的,你来用。就问题而言,这个问题已经变为了一个编译器问题。

 

这篇关于计算框架相关的编译器知识(XLA, nGraph)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/593941

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis的Hash类型及相关命令小结

《Redis的Hash类型及相关命令小结》edisHash是一种数据结构,用于存储字段和值的映射关系,本文就来介绍一下Redis的Hash类型及相关命令小结,具有一定的参考价值,感兴趣的可以了解一下... 目录HSETHGETHEXISTSHDELHKEYSHVALSHGETALLHMGETHLENHSET

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始