HashMap多线程扩容导致死循环解析(JDK1.7)

2024-01-11 00:10

本文主要是介绍HashMap多线程扩容导致死循环解析(JDK1.7),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

前一篇 HashMap底层结构与实现原理 遗留了一个问题:JDK1.7中的HashMap在多线程情况下扩容可能会导致死循环。本篇就这个问题进行讲解。

扩容死循环

前一篇深入的讲解了HashMap1.7扩容的过程,这里回顾一下在扩容过程中,单链表的表现,相关的代码如下

void transfer(Entry[] newTable, boolean rehash) {int newCapacity = newTable.length;// 外层循环遍历数组槽(slot)for (Entry<K,V> e : table) {// 内层循环遍历单链表while(null != e) {// 记录当前节点的next节点Entry<K,V> next = e.next;if (rehash) {e.hash = null == e.key ? 0 : hash(e.key);}// 找到元素在新数组中的槽(slot)int i = indexFor(e.hash, newCapacity);// 用头插法将元素插入新的数组e.next = newTable[i];newTable[i] = e;// 遍历下一个节点e = next;}}
}

单线程情况下,假设A、B、C三个节点处在一个链表上,扩容后依然处在一个链表上,代码执行过程如下:
JDK1.7-HashMap扩容时链表转移过程
需要注意的几点是

  • 单链表在转移的过程中会被反转
  • table是线程共享的,而newTable是不共享的
  • 执行table = newTable后,其他线程就可以看到转移线程转移后的结果了

理解了单线程下链表在扩容时的行为,再来看多线程的情况就比较容易了

此处感谢评论区@伤神v同学的指点,以下多线程扩容图是修正后的图

还是关注transfer方法这段代码

void transfer(Entry[] newTable, boolean rehash) {int newCapacity = newTable.length;for (Entry<K,V> e : table) {while(null != e) {Entry<K,V> next = e.next;if (rehash) {e.hash = null == e.key ? 0 : hash(e.key);}int i = indexFor(e.hash, newCapacity);e.next = newTable[i];newTable[i] = e;  // *线程1在这行暂停(尚未执行)e = next;}}
}

HashMap扩容死循环

  • 线程1执行newTable[i] = e时暂停(未执行)
  • 线程2直接扩容完成
  • 线程1继续执行,此时线程1可以看到线程2扩容后的结果

图中已经画出了每一行代码执行后,HashMap的结构图,仔细观察图中的结构变化,就能理解为什么会死循环。

由此,完完整整的解释了为什么多线程情况下,JDK1.7版本的HashMap扩容有可能出现死循环。

JDK1.8改进

JDK1.8中扩容的方法是resize,对应的代码是(HashMap中第715行至第742行):

// 低位链表头节点,尾结点
// 低位链表就是扩容前后,所处的槽(slot)的下标不变
// 如果扩容前处于table[n],扩容后还是处于table[n]
Node<K,V> loHead = null, loTail = null;
// 高位链表头节点,尾结点
// 高位链表就是扩容后所处槽(slot)的下标 = 原来的下标 + 新容量的一半
// 如果扩容前处于table[n],扩容后处于table[n + newCapacity / 2]
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {next = e.next;if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}else {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}
} while ((e = next) != null);
if (loTail != null) {loTail.next = null;// 低位链表在扩容后,所处槽的下标不变newTab[j] = loHead;
}
if (hiTail != null) {hiTail.next = null;// 高位链表在扩容后,所处槽的下标 = 原来的下标 + 扩容前的容量(也就是扩容后容量的一半)newTab[j + oldCap] = hiHead;
}

注意第12行的代码(e.hash & oldCap) == 0就可以判断,当前槽上的链表在扩容前和扩容后,所在的槽(slot)下标是否一致。举个例子:
假如一个key的hash值为1001 1100,转换成十进制就是156,数组长度为1000,转换成十进制就是8。

  1001 1100
& 0000 1000
--------------0000 1000

也就是(e.hash & oldCap) != 0,很容易计算出,扩容前这个key的下标是4(156 % 8 = 4),扩容后下标是12(156 % 16 = 12)即:12 = 4 + 16 / 2,满足n = n + newCapacity / 2,由此可以看出这种计算方式非常巧妙。至于第12行之后的代码就是基本的单链表操作了,只是一个单链表同时具有头指针尾指针,等到链表被分成高位链表和低位链表后,再一次性转移到新的table。这样就完成了单链表在扩容过程中的转移,使用两条链表的好处就是转移前后的链表不会倒置,更不会因为多线程扩容而导致死循环。

总结

本篇主要通过图解的方式,解释了为什么JDK1.7中的HashMap在多线程情况下扩容可能死循环,也解释了JDK1.8如何解决这个问题。不得不说,画图是个很好的分析方式,根据代码,一步一步把结构图画出来,比对着代码瞎琢磨效果好多了。

以上就是本篇文章的全部内容。

这篇关于HashMap多线程扩容导致死循环解析(JDK1.7)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592534

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HDFS—集群扩容及缩容

白名单:表示在白名单的主机IP地址可以,用来存储数据。 配置白名单步骤如下: 1)在NameNode节点的/opt/module/hadoop-3.1.4/etc/hadoop目录下分别创建whitelist 和blacklist文件 (1)创建白名单 [lytfly@hadoop102 hadoop]$ vim whitelist 在whitelist中添加如下主机名称,假如集群正常工作的节

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

安卓链接正常显示,ios#符被转义%23导致链接访问404

原因分析: url中含有特殊字符 中文未编码 都有可能导致URL转换失败,所以需要对url编码处理  如下: guard let allowUrl = webUrl.addingPercentEncoding(withAllowedCharacters: .urlQueryAllowed) else {return} 后面发现当url中有#号时,会被误伤转义为%23,导致链接无法访问

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

OWASP十大安全漏洞解析

OWASP(开放式Web应用程序安全项目)发布的“十大安全漏洞”列表是Web应用程序安全领域的权威指南,它总结了Web应用程序中最常见、最危险的安全隐患。以下是对OWASP十大安全漏洞的详细解析: 1. 注入漏洞(Injection) 描述:攻击者通过在应用程序的输入数据中插入恶意代码,从而控制应用程序的行为。常见的注入类型包括SQL注入、OS命令注入、LDAP注入等。 影响:可能导致数据泄

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [

多线程解析报表

假如有这样一个需求,当我们需要解析一个Excel里多个sheet的数据时,可以考虑使用多线程,每个线程解析一个sheet里的数据,等到所有的sheet都解析完之后,程序需要提示解析完成。 Way1 join import java.time.LocalTime;public class Main {public static void main(String[] args) thro