深入理解 Flink(四)Flink Time+WaterMark+Window 深入分析

2024-01-10 23:52

本文主要是介绍深入理解 Flink(四)Flink Time+WaterMark+Window 深入分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink Window 常见需求背景

需求描述

每隔 5 秒,计算最近 10 秒单词出现的次数 —— 滑动窗口
每隔 5 秒,计算最近 5 秒单词出现的次数 —— 滚动窗口
在这里插入图片描述

关于 Flink time 种类 TimeCharacteristic

在这里插入图片描述

  • ProcessingTime
  • IngestionTime
  • EventTime

WindowAssigner 的子类

  • SlidingProcessingTimeWindows
  • SlidingEventTimeWindows
  • TumblingEventTimeWindows
  • TumblingProcessingTimeWindows

使用 EventTime + WaterMark 处理乱序数据

示意图:
在这里插入图片描述

  • 使用 onPeriodicEmit 方法发送 watermark,默认每 200ms 发一次。
  • 窗口起始时间默认按各个时区的整点时间,支持自定义 offset。

Flink Watermark 机制定义

有序的流的 Watermarks

在这里插入图片描述

无序的流的 Watermarks

在这里插入图片描述

多并行度流的 Watermarks

在这里插入图片描述

深入理解 Flink Watermark

Flink Window 触发的条件:

  1. watermark 时间 >= window_end_time
  2. 在 [window_start_time, window_end_time) 区间中有数据存在(注意是左闭右开的区间),而且是以 event time 来计算的

Flink 处理太过延迟数据

Flink 丢弃延迟太多的数据

企业生产中一般不用。

Flink 指定允许再次迟到的时间

治标不治本,企业生产中一般不用。

Flink 收集迟到的数据单独处理

企业生产中应用较为广泛。

Flink 多并行度 Watermark

一个 window 可能会接受到多个 waterMark,我们以最小的为准。
在这里插入图片描述

Flink Window 概述

官网介绍

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/datastream/operators/windows/
在这里插入图片描述

Flink Window 分类

Flink 的 window 分为两种类型的 Window,分别是:Keyed Windows 和 Non-Keyed Windows,他们的使用方式不同:

// Keyed Windows 
stream.keyBy(...) <- keyed versus non-keyed windows.window(...) <- required: "assigner"[.trigger(...)] <- optional: "trigger" (else default trigger)[.evictor(...)] <- optional: "evictor" (else no evictor)[.allowedLateness(...)] <- optional: "lateness" (else zero)[.sideOutputLateData(...)] <- optional: "output tag" (else no side output for late data).reduce/aggregate/apply() <- required: "function"[.getSideOutput(...)] <- optional: "output tag"
// Non-Keyed Windows
stream.windowAll(...) <- required: "assigner"[.trigger(...)] <- optional: "trigger" (else default trigger)[.evictor(...)] <- optional: "evictor" (else no evictor)[.allowedLateness(...)] <- optional: "lateness" (else zero)[.sideOutputLateData(...)] <- optional: "output tag" (else no side output for late data).reduce/aggregate/apply() <- required: "function"[.getSideOutput(...)] <- optional: "output tag"

Window 的生命周期

  1. 当属于某个窗口的第一个元素到达的时候,就会创建一个窗口。
  2. 当时间(event or processing time)超过 window 的结束时间戳加上用户指定的允许延迟(Allowed Lateness)时,窗口将被完全删除。
  3. 每个 Window 之上,都绑定有一个 Trigger 或者一个 Function(ProcessWindowFunction, ReduceFunction, or AggregateFunction)用来执行窗口内数据的计算。
  4. 可以给 Window 指定一个 Evictor,它能够在 after the trigger fires 以及 before and/or after the function is applied 从窗口中删除元素。

Flink Window 类型

Flink 流批同一前后的 Window 分类:
在这里插入图片描述

tumblingwindows —— 滚动窗口

在这里插入图片描述

slidingwindows —— 滑动窗口

在这里插入图片描述

session windows —— 会话窗口

在这里插入图片描述

global windows —— 全局窗口

在这里插入图片描述

Flink Window 操作使用

高级玩法:自定义 Trigger、自定义 Evictor,读者可自行搜索相关文章与代码。

Flink Window 增量聚合

  • reduce(ReduceFunction)
  • aggregate(AggregateFunction)
  • sum()
  • min()
  • max()
  • sum()

Flink Window 全量聚合

  • apply(WindowFunction)
  • process(ProcessWindowFunction)

Flink Window Join

// 在 Flink 中对两个 DataStream 做 Join
// 1、指定两张表
// 2、指定这两张表的链接字段
stream.join(otherStream) // 两个流进行关联.where(<KeySelector>) // 选择第一个流的key作为关联字段.equalTo(<KeySelector>) // 选择第二个流的key作为关联字段.window(<WindowAssigner>) // 设置窗口的类型.apply(<JoinFunction>) // 对结果做操作 process apply = foreach

Tumbling Window Join

在这里插入图片描述

Sliding Window Join

在这里插入图片描述

Session Window Join

在这里插入图片描述

Interval Join

在这里插入图片描述
核心代码示例:

DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;
orangeStream.keyBy(<KeySelector>).intervalJoin(greenStream.keyBy(<KeySelector>)).between(Time.milliseconds(-2), Time.milliseconds(1)).process (new ProcessJoinFunction<Integer, Integer, String(){@Overridepublic void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {out.collect(first + "," + second);}});

这篇关于深入理解 Flink(四)Flink Time+WaterMark+Window 深入分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592488

相关文章

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

如何使用Python实现一个简单的window任务管理器

《如何使用Python实现一个简单的window任务管理器》这篇文章主要为大家详细介绍了如何使用Python实现一个简单的window任务管理器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 任务管理器效果图完整代码import tkinter as tkfrom tkinter i

一文带你深入了解Python中的GeneratorExit异常处理

《一文带你深入了解Python中的GeneratorExit异常处理》GeneratorExit是Python内置的异常,当生成器或协程被强制关闭时,Python解释器会向其发送这个异常,下面我们来看... 目录GeneratorExit:协程世界的死亡通知书什么是GeneratorExit实际中的问题案例

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon