tensorflow模型的恢复和加载ckpt

2024-01-10 20:32

本文主要是介绍tensorflow模型的恢复和加载ckpt,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

链接:https://www.jianshu.com/p/c9fd5c01715e

   总的来说,模型在保存和恢复时最重要的是留下数据接口,方便使用时传入数据和获取结果。TensorFlow 中常用的模型保存格式为 .ckpt 和 .pb,下面分别进行详细说明。

一、ckpt 格式模型保存与恢复

        .ckpt 格式保存与恢复都很简单,具体可参考 TensorFlow 训练 CNN 分类器。

1. ckpt 格式模型保存

inputs = tf.placeholder(tf.float32, shape=[None, ···], name='inputs')  <-- 入口
···
prediction = tf.nn.softmax(logits, name='prediction')  <-- 出口(仅作为例子,下同)
···
saver = tf.train.Saver()
···with tf.Session() as sess:···    <-- 训练过程saver.save(sess, './xxx/xxx.ckpt')  <-- 模型保存

如上述代码所示,假设你定义了一个 TensorFlow 模型,数据入口由占位符 inputs 给定,结果出口由张量 prediction 给定。通过语句 saver = tf.train.Saver() 定义了模型保存的一个实例对象 saver,当模型训练结束之后只需要简单的一条语句:

saver.save(sess, path_to_model.ckpt)

就把训练结果保存到了指定的路径。

        以上代码之所以把变量 inputsprediction 单独列出,一方面是因为它们是模型 Graph 的起点和终点(戏称为数据入口、出口),另一方面的原因是它们被特别的指定了名称,因而在模型恢复时可以通过它们的名称而得到 Graph 中对应的节点。

2. ckpt 格式模型恢复

        当你需要导入模型进行推断时,只需要通过张量名获取数据入口和出口,然后传入数据即可:

with tf.Session() as sess:saver = tf.train.import_meta_graph('./xxx/xxx.ckpt.meta')saver.restore(sess, './xxx/xxx.ckpt')inputs = tf.get_default_graph().get_tensor_by_name('inputs:0')prediction = tf.get_default_graph().get_tensor_by_name('prediction:0')pred = sess.run(prediction, feed_dict={inputs: xxx}

  保存为 .ckpt 模型的一个好处是,当需要继续训练时,只需要将训练过的模型结果导入,然后在这个基础上再继续训练。而下面的 .pb 格式则不能继续训练,因为这种格式保存的模型参数都已经转化为了常量(而不再是变量)。

二、pb 格式模型保存与恢复

        .pb 格式模型保存与恢复相比于前面的 .ckpt 格式而言要稍微麻烦一点,但使用更灵活,特别是模型恢复,因为它可以脱离会话(Session)而存在,便于部署。

1. pb 格式模型保存

        与 .ckpt 格式模型保存类似,首先定义数据入口、出口:

from tensorflow.python.framework import graph_util···
inputs = tf.placeholder(tf.float32, shape=[None, ···], name='inputs') 
···
prediction = tf.nn.softmax(logits, name='prediction') 
···with tf.Session() as sess:···    <-- 训练过程graph_def = tf.get_default_graph().as_graph_def()output_graph_def = graph_util.convert_variables_to_constants(sess, graph_def, ['prediction']  <-- 参数:output_node_names,输出节点名)with tf.gfile.GFile('./xxx/xxx.pb', 'wb') as fid:serialized_graph = output_graph_def.SerializeToString()fid.write(serialized_graph)

然后通过函数 graph_util.convert_variables_to_constants 将模型固话,使得所有变量转化为常量,之后写入到指定的路径完成模型保存过程。

2. pb 格式模型恢复

        .pb 格式模型恢复自由度较大,不需要在会话里进行操作,可以独立存在:

import osdef load_model(path_to_model.pb):if not os.path.exists(path_to_model.pb):raise ValueError("'path_to_model.pb' is not exist.")model_graph = tf.Graph()with model_graph.as_default():od_graph_def = tf.GraphDef()with tf.gfile.GFile(path_to_model.pb, 'rb') as fid:serialized_graph = fid.read()od_graph_def.ParseFromString(serialized_graph)tf.import_graph_def(od_graph_def, name='')return model_graph

模型导入之后,便可以获取数据入口和出口,然后进行推断:

model_graph = load_model('./xxx/xxx.pb')inputs = model_graph.get_tensor_by_name('inputs:0')
prediction = model_graph.get_tensor_by_name('prediction:0')with model_graph.as_default():with tf.Session(graph=model_graph) as sess:···pred = sess.run(prediction, feed_dict={inputs: xxx}

三、ckpt 格式转 pb 格式

        一般情况下,为了便于从断点之处继续训练,模型通常保存为 .ckpt 格式,而一旦对训练结果很满意之后则可能需要将 .ckpt 格式转化为 .pb 格式。转化方法很简单,只需要综合前面的一、二两步即可:

from tensorflow.python.framework import graph_utilwith tf.Session() as sess:# Load .ckpt filesaver = tf.train.import_meta_graph('./xxx/xxx.ckpt.meta')saver.restore(sess, './xxx/xxx.ckpt')# Save as .pb filegraph_def = tf.get_default_graph().as_graph_def()output_graph_def = graph_util.convert_variables_to_constants(sess, graph_def, ['prediction']  <-- 输出节点名,以实际情况为准)with tf.gfile.GFile('./xxx/xxx.pb', 'wb') as fid:serialized_graph = output_graph_def.SerializeToString()fid.write(serialized_graph)


 

 

这篇关于tensorflow模型的恢复和加载ckpt的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/591983

相关文章

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

使用Python实现网络设备配置备份与恢复

《使用Python实现网络设备配置备份与恢复》网络设备配置备份与恢复在网络安全管理中起着至关重要的作用,本文为大家介绍了如何通过Python实现网络设备配置备份与恢复,需要的可以参考下... 目录一、网络设备配置备份与恢复的概念与重要性二、网络设备配置备份与恢复的分类三、python网络设备配置备份与恢复实

SpringBoot项目启动报错"找不到或无法加载主类"的解决方法

《SpringBoot项目启动报错找不到或无法加载主类的解决方法》在使用IntelliJIDEA开发基于SpringBoot框架的Java程序时,可能会出现找不到或无法加载主类com.example.... 目录一、问题描述二、排查过程三、解决方案一、问题描述在使用 IntelliJ IDEA 开发基于

MySQL使用binlog2sql工具实现在线恢复数据功能

《MySQL使用binlog2sql工具实现在线恢复数据功能》binlog2sql是大众点评开源的一款用于解析MySQLbinlog的工具,根据不同选项,可以得到原始SQL、回滚SQL等,下面我们就来... 目录背景目标步骤准备工作恢复数据结果验证结论背景生产数据库执行 SQL 脚本,一般会经过正规的审批

通过ibd文件恢复MySql数据的操作方法

《通过ibd文件恢复MySql数据的操作方法》文章介绍通过.ibd文件恢复MySQL数据的过程,包括知道表结构和不知道表结构两种情况,对于知道表结构的情况,可以直接将.ibd文件复制到新的数据库目录并... 目录第一种情况:知道表结构第二种情况:不知道表结构总结今天干了一件大事,安装1Panel导致原来服务

Android WebView无法加载H5页面的常见问题和解决方法

《AndroidWebView无法加载H5页面的常见问题和解决方法》AndroidWebView是一种视图组件,使得Android应用能够显示网页内容,它基于Chromium,具备现代浏览器的许多功... 目录1. WebView 简介2. 常见问题3. 网络权限设置4. 启用 JavaScript5. D

SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法

《SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法》本文主要介绍了SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法,具有一定的参考价值,感兴趣的可以了解一下... 目录方法1:更改IDE配置方法2:在Eclipse中清理项目方法3:使用Maven命令行在开发Sprin

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo