Linux和windows进程同步与线程同步那些事儿(三): Linux线程同步详解示例

2024-01-10 16:04

本文主要是介绍Linux和windows进程同步与线程同步那些事儿(三): Linux线程同步详解示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Linux和windows进程同步与线程同步那些事儿(一)
Linux和windows进程同步与线程同步那些事儿(二): windows线程同步详解示例
Linux和windows进程同步与线程同步那些事儿(三): Linux线程同步详解示例
Linux和windows进程同步与线程同步那些事儿(四):windows 下进程同步
Linux和windows进程同步与线程同步那些事儿(五):Linux下进程同步

在Linux中,线程同步可以通过多种机制来实现,其中最常见的包括互斥锁(mutex)、条件变量(condition variable)和信号量(semaphore)。

1. 互斥锁(Mutex):

互斥锁是最常用的线程同步机制,它可以确保在同一时间只有一个线程可以访问共享资源。
在Linux中,可以使用pthread_mutex_t类型的互斥锁来实现线程同步。

代码示例:

#include <stdio.h>
#include <pthread.h>int global_variable = 0;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;void* thread_function(void* arg) {for (int i = 0; i < 1000; i++) {// 加锁pthread_mutex_lock(&mutex);// 修改全局变量global_variable++;// 解锁pthread_mutex_unlock(&mutex);}return NULL;
}int main() {pthread_t thread1, thread2;// 初始化mutexpthread_mutex_init(&mutex, NULL);// 创建两个线程pthread_create(&thread1, NULL, thread_function, NULL);pthread_create(&thread2, NULL, thread_function, NULL);// 等待线程结束pthread_join(thread1, NULL);pthread_join(thread2, NULL);// 销毁mutexpthread_mutex_destroy(&mutex);printf("Global variable value: %d\n", global_variable);return 0;
}

2. 条件变量(Condition Variable):

条件变量用于线程间的通信和同步,允许线程等待某个特定条件的发生。
在Linux中,可以使用pthread_cond_t类型的条件变量来实现线程同步。

条件变量是一种同步机制,它允许线程在满足特定条件之前等待,并在条件满足时被其他线程通知。

示例代码:演示如何使用条件变量来控制多线程修改全局变量的值:

#include <stdio.h>
#include <pthread.h>int global_var = 0;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;void* thread_function(void* arg)
{int new_value = *(int*)arg;pthread_mutex_lock(&mutex);// 等待条件满足while (global_var != 0){pthread_cond_wait(&cond, &mutex);}// 修改全局变量的值global_var = new_value;printf("Thread %d has modified global_var to %d\n", pthread_self(), global_var);// 通知其他线程条件已经满足pthread_cond_broadcast(&cond);pthread_mutex_unlock(&mutex);return NULL;
}int main()
{pthread_t thread1, thread2;int value1 = 123, value2 = 456;// 创建两个线程pthread_create(&thread1, NULL, thread_function, &value1);pthread_create(&thread2, NULL, thread_function, &value2);pthread_join(thread1, NULL);pthread_join(thread2, NULL);printf("Final value of global_var is %d\n", global_var);return 0;
}

在上面的代码中,有两个线程分别调用thread_function函数。此函数接收一个整数参数作为新的全局变量值。线程首先获得互斥锁并进入临界区,然后使用pthread_cond_wait函数等待条件满足。只有当全局变量global_var的值为0时,线程才被允许修改这个变量的值。一旦满足这个条件,线程就会修改全局变量的值,并通过pthread_cond_broadcast函数通知其他等待这个条件的线程。最后,线程释放互斥锁并退出。

main函数中,我们创建了两个线程并等待它们完成。然后,我们打印最终的全局变量值。

通过使用条件变量,我们可以确保全局变量只能在满足特定条件时被修改,从而避免竞态条件和数据竞争的问题。

请注意,上述代码只是一个示例,用于说明如何使用条件变量来控制多线程修改全局变量的值。在实际的应用中,您可能还需要考虑其他方面,如错误处理和性能优化等。

3. 信号量(Semaphore):

信号量是一种经典的线程同步机制,它可以用于控制对共享资源的访问。
在Linux中,可以使用sem_t类型的信号量来实现线程同步。

在Linux下,我们可以使用信号量来实现对多线程修改全局变量的值的控制。信号量是一种用于进程间同步和互斥的机制,可以用来控制对共享资源的访问。

信号量可以分为二进制信号量计数信号量。二进制信号量只能取0或1,用于互斥操作。计数信号量可以取多个非负整数值,用于同步操作。

下面是一个简单的示例代码,实现了两个线程对全局变量进行自增操作的互斥控制:

#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>int global_var = 0;
sem_t sem;void* thread_func(void* arg) {int i;for (i = 0; i < 100000; i++) {sem_wait(&sem); // 等待信号量,若为0则阻塞global_var++;sem_post(&sem); // 释放信号量,唤醒等待的线程}return NULL;
}int main() {pthread_t thread1, thread2;sem_init(&sem, 0, 1); // 初始化信号量,初始值为1pthread_create(&thread1, NULL, thread_func, NULL);pthread_create(&thread2, NULL, thread_func, NULL);pthread_join(thread1, NULL);pthread_join(thread2, NULL);sem_destroy(&sem); // 销毁信号量printf("Global variable value: %d\n", global_var);return 0;
}

在上面的示例中,我们首先通过 sem_init 函数初始化了一个计数信号量 sem,初始值为1。然后创建了两个线程,并通过 pthread_create 函数将其与 thread_func 函数绑定。thread_func 函数中通过 sem_wait 函数等待信号量,当信号量的值为0时则阻塞,否则减1并继续执行。在对全局变量进行自增操作后,通过 sem_post 函数释放信号量,唤醒等待的线程。最后,通过 sem_destroy 函数销毁信号量。

运行该程序,两个线程会对全局变量 global_var 进行自增操作,由于信号量的存在,每次只能有一个线程能够修改该变量,从而实现了对全局变量访问的互斥控制。最终输出的全局变量值应为 200000。

需要注意的是,信号量的使用需要谨慎,错误的使用可能导致死锁等问题。确保在必要的时候对信号量加锁和解锁,并根据实际需求选择合适的信号量类型。


这些线程同步机制都可以通过Linux提供的pthread库来使用。在实际编程中,选择合适的线程同步机制取决于具体的应用场景和需求,以确保线程间的安全访问和协调。


拓展:
在 Linux 中编译依赖 pthread 库的程序,可以使用以下命令行表达式来编译:

gcc -o output_file source_file.c -lpthread

其中,output_file 是编译后生成的可执行文件的文件名,source_file.c 是需要编译的源代码文件的文件名。

选项 -lpthread 表示链接 pthread 库,将其加入到编译过程中。

如果源文件有多个,可以将它们一一列出来,例如:

gcc -o output_file source_file1.c source_file2.c -lpthread

这篇关于Linux和windows进程同步与线程同步那些事儿(三): Linux线程同步详解示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/591336

相关文章

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数