T-SNE笔记 无痛理解

2024-01-10 11:10
文章标签 笔记 理解 无痛 sne

本文主要是介绍T-SNE笔记 无痛理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先看下面两个图,在这里插入图片描述
作左图是t-SNE降维后得到的,有图是PCA 降维后得到的。很明显t-SNE将分的更加清晰,而PCA则重叠严重。
t-sne 是一种非线性的降维方法,一般可视化用的比较多,利用t-sne 可以把高维数据降维到2维或者3维空间上,然后各个数据点跟自己在高维空间上相近的数据点聚集在一起 好比空中漂浮的不同颜色的小球 让它们落地后 再根据原本在空中的聚集情况聚集在一起。
t-sne的原理是在高维空间上非常接近的点在转换到低维空间上相近的可能性会大。而高维空间上比较远的点映射到低维空间上的时候会自然区分得比较远。
推理过程如下:
首先我们分别计算在高维空间上similarity S(xi,xj),和降维后的similarity S(zi,zj)
图片来自台湾大学李宏毅教授课件在这里插入图片描述
由上图可见,当在高维空间上xi和xi越相近两个点的距离越小越可靠近y轴,假设在sigmiod function 上黄色曲线代表降维前,蓝色曲线代表降维后,当xi和xj距离变大时 其下降速度会非常快,对应到低维空间Z曲线的距离就会很大两者之间的相似度就会减小。
为了统一标准衡量高维空间和低维空间上相似性。在此把点在高维空间上距离和在低维空间上的距离概率化把这两个相似度放到同一个概率分布(t 分布)上由此把双方统一到0到1之间的数值(如下图),这样我们就可以计算Loss fuction 了。
在这里插入图片描述

所以定义一个 loss fuction:
在这里插入图片描述
最小化这个Loss Function 后就可以找到Z使得P和Z的分布尽可能接近。Z就是降维后的结果。

这篇关于T-SNE笔记 无痛理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/590586

相关文章

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识