ICML2019最佳论文奖新鲜发布,Google、ETH、MaxPlanck、剑桥成最终赢家

本文主要是介绍ICML2019最佳论文奖新鲜发布,Google、ETH、MaxPlanck、剑桥成最终赢家,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


源 / 专知

正在美国加州举办的,第36届国际机器学习大会(ICML)公布了本届会议最佳论文奖结果,分别是来自苏黎世联邦理工大学-MaxPlanck研究所-谷歌大脑的《挑战无监督分离式表示学习常见假设》以及剑桥大学的《稀疏变分高斯过程回归的收敛速度》。


论文便捷下载

关注公众号,后台回复关键词

20190613

即可下载


根据公开数据显示,今年ICML共提交论文数3424篇,录用774,录取率为22.6%。


1、Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations


本篇论文为苏黎世联邦理工学院、MaxPlanck智能系统研究所、谷歌大脑联合出品。


在本篇文章中,我们对无监督分离式表示学习进行了大规模的评估工作,并针对一些常见的假设进行了细致分析,以便对未来的工作方向提供一些建设性的改进建议。该评估工作实在7个不同的数据集中训练了12000个模型,并涵盖了最重要的方法和评估指标。重要的是,作者还发布了本研究中的相关代码及一万多个预训练模型,由此产生的工具包(disentanglement_lib),允许研究人员基于此进行自己的研究工作,并轻松重现我们的研究工作。

640?wx_fmt=gif

本文从理论和实践两个维度进行了细致验证,具体的贡献点可概括如下:

  • 从理论上:如果没有考虑学习方法与数据集所产生的归纳偏置,那么基本无法实现分离式表示的无监督学习过程。

  • 从实践上:在大规模可重复的实验研究中,分析了当前主流方法和其归纳偏置,该研究采用了完善的无监督分离式实验方案,本文实现了六种最新的无监督分离式学习方法,并在7个数据集中训练了12000个模型。

  • 发布了disentanglement_lib,用于供其他研究人员重现我们的工作。

  • 挑战了分离式无监督学习中的一些共识:

    • 观察到表示维度具有一定的相关性

    • 初始种子与超参数似乎比模型选择更加的重要,没有发现任何证据表明模型可以通过无监督方式可靠的学习到分离式表示特征,另外如果无法访问到ground-truth标签,即使能够迁移预训练得到的超参数,似乎也无法得出高质量的结果。

    • 目前没有很强的证据表明,分离式特征对下游任务是有效的,例如通过降低学习的样本复杂性。


2、Rates of Convergence for Sparse Variational Gaussian Process Regression


640?wx_fmt=png


目前实现的高斯过程后验的变分近似算法,可以有效降低数据集计算成本复杂度。虽然计算成本似乎是随数据集规模线性增长的,但算法真正的复杂性却取决于如何增加诱导变量的数量,来保证一定的近似质量。


研究人员通过KL散度的上界特性来解决这一问题,证明了在高概率情况下,诱导变量数目的增长速度比数据集规模要慢。例如,对于具有D维的整体分布回归,使用流行的Squared Exponential核就足够了。结果表明,随着数据集增长,高斯过程后验可以真正近似地逼近目标,并为如何在连续学习场景中增加诱导变量提供具体的规则。


640?wx_fmt=png

推荐阅读

世界最大的色情网站要收购汤不热,色上加色???

送给小白的 7 个 python 小坑

机器学习特训营,硅谷导师直播授课,现加入仅需68元!

Python 编码的这些坑,你还在踩吗!?

这个大学生在校园测试5G网络的视频火了!

640?wx_fmt=png

喜欢就点击“在看”吧!

这篇关于ICML2019最佳论文奖新鲜发布,Google、ETH、MaxPlanck、剑桥成最终赢家的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588604

相关文章

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

Vue3项目开发——新闻发布管理系统(六)

文章目录 八、首页设计开发1、页面设计2、登录访问拦截实现3、用户基本信息显示①封装用户基本信息获取接口②用户基本信息存储③用户基本信息调用④用户基本信息动态渲染 4、退出功能实现①注册点击事件②添加退出功能③数据清理 5、代码下载 八、首页设计开发 登录成功后,系统就进入了首页。接下来,也就进行首页的开发了。 1、页面设计 系统页面主要分为三部分,左侧为系统的菜单栏,右侧

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而

消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法

消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法   消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法 [转载]原地址:http://blog.csdn.net/x605940745/article/details/17911115 消除SDK更新时的“

maven发布项目到私服-snapshot快照库和release发布库的区别和作用及maven常用命令

maven发布项目到私服-snapshot快照库和release发布库的区别和作用及maven常用命令 在日常的工作中由于各种原因,会出现这样一种情况,某些项目并没有打包至mvnrepository。如果采用原始直接打包放到lib目录的方式进行处理,便对项目的管理带来一些不必要的麻烦。例如版本升级后需要重新打包并,替换原有jar包等等一些额外的工作量和麻烦。为了避免这些不必要的麻烦,通常我们

Prometheus与Grafana在DevOps中的应用与最佳实践

Prometheus 与 Grafana 在 DevOps 中的应用与最佳实践 随着 DevOps 文化和实践的普及,监控和可视化工具已成为 DevOps 工具链中不可或缺的部分。Prometheus 和 Grafana 是其中最受欢迎的开源监控解决方案之一,它们的结合能够为系统和应用程序提供全面的监控、告警和可视化展示。本篇文章将详细探讨 Prometheus 和 Grafana 在 DevO