MiniTab的正态性检验结果的分析

2024-01-09 21:12

本文主要是介绍MiniTab的正态性检验结果的分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

正态性检验概述

可使用 正态性检验 确定数据是否不服从正态分布。

执行菜单:要执行正态性检验,请选择统计 > 基本统计 > 正态性检验。

正态性检验 的假设

对于正态性检验,进行如下假设。

  • H0:数据服从正态分布。
  • H1:数据不服从正态分布。

正态性检验 的数据注意事项

  1. 数据必须为数字:您必须拥有数字数据,如包装重量。
  2. 样本数据应当是随机选择的:在统计学中,随机样本用于对总体做出归纳,即推断。如果数据不是随机收集的,则结果可能无法代表总体。
  3. 样本数量应当大于 20:如果样本数量小于 20,则提供的功效可能不足,无法检测样本数据和正态分布之间的显著差异。但是,在使用很大的样本数量时要格外小心,因为它们可能会提供过大的功效。当检验功效太大时,样本数据和理论分布之间可能无意义的小差异似乎会非常显著。

正态性检验 的示例

一家加工食品生产公司的科研人员想评估本公司生产的瓶装酱料的脂肪百分比。宣传的百分比为 15%。科研人员测量了 20 个随机样本的脂肪百分比。

样本 ID    脂肪百分比
1    15.2
2    12.4
3    15.4
4    16.5
5    15.9
6    17.1
7    16.9
8    14.3
9    19.1
10    18.2
11    18.5
12    16.3
13    20.0
14    19.2
15    12.3
16    12.8
17    17.9
18    16.3
19    18.7
20    16.2

科研人员想在执行假设检验之前验证正态性假设。

  1. 把上述数据输入到Minitab的数据表中。
  2. 选择统计 > 基本统计 > 正态性检验。
  3. 在变量中,输入脂肪百分比。
  4. 单击确定。

选择特定正态性检验

选择一个正态性检验。Anderson-Darling 适用于大多数情况。

  • Anderson-Darling:对于检测数据分布尾部的非正态性而言,该检验通常比其他两种检验更有效。
  • Ryan-Joiner:对于检测非正态性而言,该检验与 Anderson-Darling 具有类似的功能。
  • Kolmogorov-Smirnov:该检验对于正态分布中的小偏差较不敏感。

指定 正态性检验 的百分位线

百分位线有两段与拟合分布线相交。共绘制两段,一段与数据刻度相交,另一段与百分比刻度相交。百分位线通常用于计算检验分数。例如,如果您想要知道第 95 个百分位的检验分数,则可以在 95% 处添加一条百分位线。Minitab 会计算相应的数据值。相反,如果您在数据值处添加一条百分位线,Minitab 会计算相应的百分比。

  • 无:不显示百分位线。
  • 在 Y 值:输入百分位线的 y 刻度值。输入介于 0 和 100 之间的值。

eg:第 95 个百分位:排在第 95 个百分位的员工的检验分数为 31.64。换句话说,有 95% 的员工的分数为 31.64 或更少。

  • 在数据值:输入百分位线的数据值。

eg:检验分数 27:检验分数 27 略高于第 70 个百分位,或者有略多于 70% 的员工的分数为 27 或更少。

 解释结果

主要输出包括 p 值和概率图。

数据点离拟合的正态分布线相对较近。p 值大于显著性水平 0.05。因此,科学家无法否定数据服从正态分布这一原假设。

步骤 1:确定数据是否不服从正态分布

要确定数据是否不服从正态分布,请将 p 值与显著性水平进行比较。通常,显著性水平(用 α 或 alpha 表示)为 0.05 即可。显著性水平 0.05 表示当数据实际上服从正态分布时,断定数据不服从正态分布的风险为 5%。

P 值 ≤ α:数据不服从正态分布(否定 H0)

如果 p 值小于或等于显著性水平,则决策为否定原假设并得出数据不服从正态分布的结论。

P 值 > α:您无法得出数据不服从正态分布的结论(无法否定 H0)

如果 p 值大于显著性水平,则决策为无法否定原假设。您没有足够的证据得出数据不服从正态分布的结论。

主要结果:P 值

在这些结果中,原假设声明数据服从正态分布。由于 p 值为 0.463(大于显著性水平 0.05),则所做的决定为无法否定原假设。您无法得出数据不服从正态分布的结论。

步骤 2:对正态分布的拟合程度进行可视化处理

为了可视化正态分布的拟合,请检查概率图并评估数据点与拟合的分布线的服从程度。正常分布趋于紧密服从直线。偏斜数据将形成曲线。

右偏斜数据左偏斜数据

提示

在 Minitab 中,将鼠标指针移到拟合分布线上并按住将可看到百分位数和值的控制图。

在这个概率图中,数据沿着正态分布线构成的线条大致为直线。正态分布似乎能够很好地拟合数据。

这篇关于MiniTab的正态性检验结果的分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588444

相关文章

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑