R语言学习笔记:分析学生的考试成绩

2024-01-09 11:58

本文主要是介绍R语言学习笔记:分析学生的考试成绩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

孩子上初中时拿到过全年级一次考试所有科目的考试成绩表,正好可以用于R语言的统计分析学习。为了不泄漏孩子的姓名,就用学号代替了,感兴趣可以下载测试数据进行练习。

num class chn math eng phy chem politics bio history geo pe
0158 3 99 120 114 70 49.5 50 49 48.5 49.5 60
0442 7 107 120 118.5 68.6 43 49 48.5 48.5 49 56
0249 4 98 120 116 70 47.5 47 49 47.5 49 60
0573 9 102 113 111.5 70 47 49 49 49 49.5 60
0310 5 103 120 111.5 70 44.75 46.5 48 48 48 60

... ...

# 在windows中设置工作目录

setwd("D:/scores_test")

# 读入成绩表,第一行是header

scores <- read.table("scores.txt", header=TRUE, row.names="num")

head(scores)

str(scores)    # 显示对象的结构

names(scores)  # 显示每一列的名称

attach(scores)

# 给出数据的概略信息

summary(scores)

summary(scores$math)

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.

   3.00   84.00  100.00   93.98  111.00  120.00

# 1st Qu. 第一个4分位数

# 选择某行

child <- scores['239',]

sum(child) #求孩子的总分 

[1] 647.45

scores.class4 <- scores[class==4,]    # 挑出4班的

# 求每个班的平均数学成绩

aver <- tapply(math, class, mean)

# 画条曲线看看每个班的数学平均成绩

plot(aver, type='b', ylim=c(80,100), main="各班数学成绩平均分", xlab="班级", ylab="数学平均分")

image

# 生成数据的二维列联表

table(math, class)

     class

math  1 2 3 4 5 6 7 8 9 10

  3   0 0 0 0 0 0 1 0 0  0

  9   1 0 0 0 0 0 0 0 0  0

  10  1 0 1 0 0 0 0 0 0  0

  18  0 0 0 1 0 1 0 0 1  0

……………

# 求4班每一科的平均成绩

subjects <- c('chn','math','eng','phy','chem','politics','bio','history','geo','pe')

sapply(scores[class==4, subjects], mean)

     chn     math      eng      phy     chem politics      bio  history      geo       pe

83.10938 97.29688 85.60156 54.30469 34.67969 42.41406 41.79688 36.77344 44.24219 54.31250

# 求各班各科的平均成绩

aggregate(scores[subjects], by=list(class), mean)
Group.1 chn math eng phy chem politics bio history geo pe
1 1 82.98387 92.82258 92.45161 56.04516 34.95161 42.57258 42.29839 37.03226 43.44355 54.12903
2 2 81.57759 93.17241 85.01724 54.39483 34.60776 43.13793 42.05172 38.59483 43.60345 54.68966
3 3 82.62069 88.58621 82.46552 51.59483 32.33190 41.99138 41.59483 35.49138 42.97414 54.55172
4 4 83.10938 97.29688 85.60156 54.30469 34.67969 42.41406 41.79688 36.77344 44.24219 54.31250
5 5 84.74107 97.89286 83.66964 56.10000 33.91518 42.05357 42.57143 37.77679 43.96429 54.00000
6 6 83.14407 92.40678 78.57627 51.74068 33.36864 40.64407 41.55932 34.46610 43.37288 53.22034
7 7 83.01724 90.29310 87.00862 51.75172 33.98276 41.63793 42.51724 37.46552 44.22414 53.72414
8 8 83.65833 98.65000 86.91667 56.02333 36.07917 41.70000 42.40833 37.84167 44.81667 52.93333
9 9 83.20968 94.35484 86.48387 54.29516 36.11694 41.94355 42.72581 36.07258 44.30645 53.48387
10 10 84.33871 94.08065 86.66774 55.08548 36.01210 41.86290 42.22581 36.78226 44.14516 53.61290

# 看看数学成绩的分布图

hist(math)

image

默认是按频数形成的直方图,设置freq参数可以画密度分布图。

hist(math, freq=FALSE)

lines(density(math), col='blue')

rug(jitter(math))   #轴须图,在轴旁边出现一些小线段,jitter是加噪函数

# 核密度图

plot(density(chn), col='blue', lwd=2)

lines(density(math), col='red', lwd=2)

text(locator(2),c("语文", "数学"))  #用鼠标拾取点,加上文本标注

# 箱线图

boxplot(math)

image

boxplot.stats(math) #这个函数可以看到画出箱线图的具体的数据值 

[1] 44 84 100 111 120  

$n
[1] 599   #有效样本点个数

$conf
[1] 98.25696 101.74304

$out   #离群值
[1] 38 42 35 40 43 36 41 40 36 18 26 36 42 32 41 29 18 24 10 20 34 19 10 3
[25] 35 20 35 18 22 9

# 并列箱线图,看各班的数据分布情况 

boxplot(math ~ class, data=scores)

lines(tapply(math,class,mean), col='blue', type='b') #加上平均值

可以看出2班没有拖后腿的,4班有6个拖后腿的

# 看看各科成绩的相关性

# 可以看出:数学和物理的相关性达88%,物理和化学成绩的相关性达86%。

cor(scores[,subjects])

               chn      math       eng       phy      chem  politics       bio   history       geo        pe
chn      1.0000000 0.6588126 0.7326778 0.6578172 0.6271155 0.7257003 0.6902282 0.6971145 0.6438662 0.2712453
math     0.6588126 1.0000000 0.8079255 0.8860467 0.8304643 0.7090681 0.7951987 0.7732791 0.7723853 0.3300249
eng      0.7326778 0.8079255 1.0000000 0.8170998 0.7868710 0.7498946 0.7731044 0.7948219 0.7265406 0.3159347
phy      0.6578172 0.8860467 0.8170998 1.0000000 0.8615512 0.7081717 0.8077105 0.8100599 0.7814152 0.3251233
chem     0.6271155 0.8304643 0.7868710 0.8615512 1.0000000 0.6441334 0.7578770 0.7993298 0.7264814 0.2769066
politics 0.7257003 0.7090681 0.7498946 0.7081717 0.6441334 1.0000000 0.7071181 0.7192860 0.6906930 0.3033607
bio      0.6902282 0.7951987 0.7731044 0.8077105 0.7578770 0.7071181 1.0000000 0.7771735 0.8382525 0.2428081
history  0.6971145 0.7732791 0.7948219 0.8100599 0.7993298 0.7192860 0.7771735 1.0000000 0.7731044 0.2708434
geo      0.6438662 0.7723853 0.7265406 0.7814152 0.7264814 0.6906930 0.8382525 0.7731044 1.0000000 0.2605251
pe       0.2712453 0.3300249 0.3159347 0.3251233 0.2769066 0.3033607 0.2428081 0.2708434 0.2605251 1.0000000

# 画个图出来看看

pairs(scores[,subjects])

image

# 详细看看数学和物理的线性相关性

cor_phy_math <- lm(phy ~ math, scores)

plot(math, phy)

abline(cor_phy_math)

cor_phy_math

# 也就是说拟合公式为:phy = 0.5258 * math + 4.7374,为什么是0.52?因为数学最高分为120,物理最高分为70

Call:
lm(formula = phy ~ math, data = scores)

Coefficients:
(Intercept)         math 
     4.7374       0.5258

image

这篇关于R语言学习笔记:分析学生的考试成绩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/587040

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下