R语言学习笔记:分析学生的考试成绩

2024-01-09 11:58

本文主要是介绍R语言学习笔记:分析学生的考试成绩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

孩子上初中时拿到过全年级一次考试所有科目的考试成绩表,正好可以用于R语言的统计分析学习。为了不泄漏孩子的姓名,就用学号代替了,感兴趣可以下载测试数据进行练习。

num class chn math eng phy chem politics bio history geo pe
0158 3 99 120 114 70 49.5 50 49 48.5 49.5 60
0442 7 107 120 118.5 68.6 43 49 48.5 48.5 49 56
0249 4 98 120 116 70 47.5 47 49 47.5 49 60
0573 9 102 113 111.5 70 47 49 49 49 49.5 60
0310 5 103 120 111.5 70 44.75 46.5 48 48 48 60

... ...

# 在windows中设置工作目录

setwd("D:/scores_test")

# 读入成绩表,第一行是header

scores <- read.table("scores.txt", header=TRUE, row.names="num")

head(scores)

str(scores)    # 显示对象的结构

names(scores)  # 显示每一列的名称

attach(scores)

# 给出数据的概略信息

summary(scores)

summary(scores$math)

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.

   3.00   84.00  100.00   93.98  111.00  120.00

# 1st Qu. 第一个4分位数

# 选择某行

child <- scores['239',]

sum(child) #求孩子的总分 

[1] 647.45

scores.class4 <- scores[class==4,]    # 挑出4班的

# 求每个班的平均数学成绩

aver <- tapply(math, class, mean)

# 画条曲线看看每个班的数学平均成绩

plot(aver, type='b', ylim=c(80,100), main="各班数学成绩平均分", xlab="班级", ylab="数学平均分")

image

# 生成数据的二维列联表

table(math, class)

     class

math  1 2 3 4 5 6 7 8 9 10

  3   0 0 0 0 0 0 1 0 0  0

  9   1 0 0 0 0 0 0 0 0  0

  10  1 0 1 0 0 0 0 0 0  0

  18  0 0 0 1 0 1 0 0 1  0

……………

# 求4班每一科的平均成绩

subjects <- c('chn','math','eng','phy','chem','politics','bio','history','geo','pe')

sapply(scores[class==4, subjects], mean)

     chn     math      eng      phy     chem politics      bio  history      geo       pe

83.10938 97.29688 85.60156 54.30469 34.67969 42.41406 41.79688 36.77344 44.24219 54.31250

# 求各班各科的平均成绩

aggregate(scores[subjects], by=list(class), mean)
Group.1 chn math eng phy chem politics bio history geo pe
1 1 82.98387 92.82258 92.45161 56.04516 34.95161 42.57258 42.29839 37.03226 43.44355 54.12903
2 2 81.57759 93.17241 85.01724 54.39483 34.60776 43.13793 42.05172 38.59483 43.60345 54.68966
3 3 82.62069 88.58621 82.46552 51.59483 32.33190 41.99138 41.59483 35.49138 42.97414 54.55172
4 4 83.10938 97.29688 85.60156 54.30469 34.67969 42.41406 41.79688 36.77344 44.24219 54.31250
5 5 84.74107 97.89286 83.66964 56.10000 33.91518 42.05357 42.57143 37.77679 43.96429 54.00000
6 6 83.14407 92.40678 78.57627 51.74068 33.36864 40.64407 41.55932 34.46610 43.37288 53.22034
7 7 83.01724 90.29310 87.00862 51.75172 33.98276 41.63793 42.51724 37.46552 44.22414 53.72414
8 8 83.65833 98.65000 86.91667 56.02333 36.07917 41.70000 42.40833 37.84167 44.81667 52.93333
9 9 83.20968 94.35484 86.48387 54.29516 36.11694 41.94355 42.72581 36.07258 44.30645 53.48387
10 10 84.33871 94.08065 86.66774 55.08548 36.01210 41.86290 42.22581 36.78226 44.14516 53.61290

# 看看数学成绩的分布图

hist(math)

image

默认是按频数形成的直方图,设置freq参数可以画密度分布图。

hist(math, freq=FALSE)

lines(density(math), col='blue')

rug(jitter(math))   #轴须图,在轴旁边出现一些小线段,jitter是加噪函数

# 核密度图

plot(density(chn), col='blue', lwd=2)

lines(density(math), col='red', lwd=2)

text(locator(2),c("语文", "数学"))  #用鼠标拾取点,加上文本标注

# 箱线图

boxplot(math)

image

boxplot.stats(math) #这个函数可以看到画出箱线图的具体的数据值 

[1] 44 84 100 111 120  

$n
[1] 599   #有效样本点个数

$conf
[1] 98.25696 101.74304

$out   #离群值
[1] 38 42 35 40 43 36 41 40 36 18 26 36 42 32 41 29 18 24 10 20 34 19 10 3
[25] 35 20 35 18 22 9

# 并列箱线图,看各班的数据分布情况 

boxplot(math ~ class, data=scores)

lines(tapply(math,class,mean), col='blue', type='b') #加上平均值

可以看出2班没有拖后腿的,4班有6个拖后腿的

# 看看各科成绩的相关性

# 可以看出:数学和物理的相关性达88%,物理和化学成绩的相关性达86%。

cor(scores[,subjects])

               chn      math       eng       phy      chem  politics       bio   history       geo        pe
chn      1.0000000 0.6588126 0.7326778 0.6578172 0.6271155 0.7257003 0.6902282 0.6971145 0.6438662 0.2712453
math     0.6588126 1.0000000 0.8079255 0.8860467 0.8304643 0.7090681 0.7951987 0.7732791 0.7723853 0.3300249
eng      0.7326778 0.8079255 1.0000000 0.8170998 0.7868710 0.7498946 0.7731044 0.7948219 0.7265406 0.3159347
phy      0.6578172 0.8860467 0.8170998 1.0000000 0.8615512 0.7081717 0.8077105 0.8100599 0.7814152 0.3251233
chem     0.6271155 0.8304643 0.7868710 0.8615512 1.0000000 0.6441334 0.7578770 0.7993298 0.7264814 0.2769066
politics 0.7257003 0.7090681 0.7498946 0.7081717 0.6441334 1.0000000 0.7071181 0.7192860 0.6906930 0.3033607
bio      0.6902282 0.7951987 0.7731044 0.8077105 0.7578770 0.7071181 1.0000000 0.7771735 0.8382525 0.2428081
history  0.6971145 0.7732791 0.7948219 0.8100599 0.7993298 0.7192860 0.7771735 1.0000000 0.7731044 0.2708434
geo      0.6438662 0.7723853 0.7265406 0.7814152 0.7264814 0.6906930 0.8382525 0.7731044 1.0000000 0.2605251
pe       0.2712453 0.3300249 0.3159347 0.3251233 0.2769066 0.3033607 0.2428081 0.2708434 0.2605251 1.0000000

# 画个图出来看看

pairs(scores[,subjects])

image

# 详细看看数学和物理的线性相关性

cor_phy_math <- lm(phy ~ math, scores)

plot(math, phy)

abline(cor_phy_math)

cor_phy_math

# 也就是说拟合公式为:phy = 0.5258 * math + 4.7374,为什么是0.52?因为数学最高分为120,物理最高分为70

Call:
lm(formula = phy ~ math, data = scores)

Coefficients:
(Intercept)         math 
     4.7374       0.5258

image

这篇关于R语言学习笔记:分析学生的考试成绩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/587040

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学