最火概念“数据中台”凭什么占据C位

2024-01-09 06:32
文章标签 数据 概念 占据 最火

本文主要是介绍最火概念“数据中台”凭什么占据C位,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

“数据中台”作为2019年科技圈公认的最火概念,当仁不让地占据了各大行业数字化转型舞台的“C位”。众多机构纷纷加紧布局,开启了头部企业对数据中台的探索热潮——不过,随后的实操较量显示,市场在不断加深认知中逐步回归理性。

“中台”最早被应用于军事领域,用以统一协调前方作战单位。后来,这种方式逐步被企业学习采用,由此发展出“数据中台”的概念,其核心价值在于帮助企业将分散的业务数据统一规划、管理、整合形成其独有的“数字资产”;与此相对的AI(人工智能)中台,则是一个用来构建大规模智能能力的“基础设施”。很多企业单独建设了数据中台或AI中台。

以阿里巴巴为例,其数据中台系统由多元数据采集和接入、公共数据中心、统一数据服务3个核心板块构成,主要用于整体商业生态当中,为其新零售、金融、旅游等板块实现业务数据化,为业务前台与云端双向赋能。此外,京东的数据中台建设速度也较快。

与数据中台对企业自身业务的绝对依托不同,AI中台以内外部两种形式发展壮大:一种通过第三方机构科技赋能形式出现,如旷视、商汤等;另一种则以企业内部AI Lab闻名,如阿里达摩院、腾讯AI Lab等。

如今,传统互联网金融公司转型金融科技公司已成大势。但在业内专家看来,以业务为主导,追求技术架构快速迭代的传统方式,不足以支撑金融科技公司继续壮大发展。随着业内中台化趋势加剧,单一中台在业务赋能中的劣势初露端倪。基于此,“融合中台”概念应运而生,即通过数据与AI的组合实现价值最大化,也实现了金融科技业务驱动1.0时代到数据智能2.0时代的过渡。“融合中台”提出者——360金融首席科学家张家兴认为:“数据本身不等于数据资产,AI本身也无法发挥价值。单独依靠数据中台,虽可打通、整合企业内部数据,但缺少技术辐射能力,很难实现最大化业务赋能。从技术角度本身而言,只有打通从数据到计算,再到模型这个数据加AI链路,才能更好赋能业务,提升运营效率。”

“数据与AI的融合并进是业务发展到一定阶段的优选之路,融合中台并非1+1等于2那么简单。”张家兴表示,“融合中台”是一个功能复杂、多技术、全场景的赋能平台,也是融合了传统数据挖掘、大数据、深度学习等能力的多维度平台。

具体来看,一是数据维度,即数据处理的全生命周期,包括数据接入、特征处理、模型训练等数据处理全生命周期的能力。二是场景维度,即跨业务的基础平台。融合中台不会局限在某个特定业务线,它将服务于公司所有业务,其发挥作用的必要性前提是要有很多业务线,且它们之间有一定相似性,并可能还会产生新的业务线。三是技术维度,即数据+算力+算法三位一体。“数据+算力+算法”构成了智能金融的核心技术体系。首先,数据是一切金融服务与金融安全的基础,是金融科技得以有效落地的核心生产资料。其次,以分布计算、GPU为代表的算力,为处理海量数据提供了有力保障。第三,以机器学习、图学习、强化学习等为代表的算法技术帮助金融行业细分领域发现规律并提供智能决策支持。“甚至可以说,金融科技在三者互为要素、互为支撑的世界中,变革了金融业的发展要素。”张家兴说。

张家兴举例道,在融合中台支撑下,智能金融全链路将发生颠覆改变。在获客环节,传统依赖人去优化与决策的广告投放方式,将通过算法加持变得更加自动、智能;在客户运营环节,公司可通过搭建实时数据平台,支持数以亿计用户全生命周期的及时有效触达,提升运营效率;在风控上,采用基于图数据的机器学习模型判定人的风险;最后服务环节,通过智能调度引入更多对话机器人,让服务变得更高效。“融合中台的搭建将使‘数据+AI’更为高效运转,从而让整个链路实现数据化、智能化。”

这篇关于最火概念“数据中台”凭什么占据C位的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/586201

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核