leetcode网格题目中的上下左右四个方向和旋转90度的数量关系的代码表示

本文主要是介绍leetcode网格题目中的上下左右四个方向和旋转90度的数量关系的代码表示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 总结

1.1 方向数组的二维表示方法

  1. 定义方向数组(一般设定的方向比较灵活,比如(-1,0), (1,0)可以表示向上和向下移动也可以相反,看题目需要改成最易懂的样子即可):可以使用二维数组 dirs 来表示四个方向(上、右、下、左),例如:
    int[][] dirs = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
    
    这里,{-1, 0} 表示向上移动,{0, 1} 表示向右移动,{1, 0} 表示向下移动,{0, -1} 表示向左移动。

1.2 方向数组的一维表示方法

  1. 一维数组表示:另一种方法是使用一维数组结合模运算来表示方向。例如,可以定义一个一维数组 dxdy,分别表示 x 轴和 y 轴的变化:
    int[] dx = {-1, 0, 1, 0};
    int[] dy = {0, 1, 0, -1};
    
    这里的数组同样表示上、右、下、左四个方向。

1.3 旋转的处理

  1. 初始化方向:假设机器人最初面向北方,可以用一个变量 d 来表示当前方向,初始设为 1(表示向右)。

  2. 右旋转 90 度:向右旋转意味着 d 的值增加 1。可以使用模运算来确保 d 的值不超过方向数组的长度:

    d = (d + 1) % 4;
    
  3. 左旋转 90 度:向左旋转意味着 d 的值减少 1。需要处理负数的情况,以确保 d 仍然是有效的索引:

    d = (d + 3) % 4;  // 或 d = (d - 1 + 4) % 4;
    
  4. 旋转 180 度:旋转 180 度意味着 d 的值增加或减少 2:

    d = (d + 2) % 4;
    

1.4 应用示例

  • 结合示例:您可以提供一个简单的例子来说明如何使用这些方向数组和旋转操作来控制机器人在二维网格上的移动。

  • 图解辅助:辅以图表来说明方向的改变,会使读者更容易理解。

这篇文章不仅对理解相关的编程题目有帮助,而且也能够加深对方向控制和数组操作的理解。

2 岛屿系列问题

利用1.1和1.2中的行走表示法就可以解决

3 旋转系列问题

3.1 第一题

3.1.1 LC1041. 困于环中的机器人

class Solution {public boolean isRobotBounded(String instructions) {int[][] direc = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};int direcIndex = 0;int x = 0, y = 0;int n = instructions.length();for (int idx = 0; idx < n; idx++) {char instruction = instructions.charAt(idx);if (instruction == 'G') {x += direc[direcIndex][0];y += direc[direcIndex][1];} else if (instruction == 'L') {direcIndex += 3;direcIndex %= 4;} else {direcIndex++;direcIndex %= 4;}}return direcIndex != 0 || (x == 0 && y == 0);}
}作者:力扣官方题解
链接:https://leetcode.cn/problems/robot-bounded-in-circle/solutions/2217873/kun-yu-huan-zhong-de-ji-qi-ren-by-leetco-kjya/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

3.1.2 改编题:LC1041. 困于环中的机器人: 原题中的一条字符串指令是原子花执行完之后看是否有环,但是现在认为"每一个instruction指令不再原子化执行,而是每一个instruction中的字符原子化执行", 请问在无限执行instruction中,是否会碰到环?

class Solution {public boolean isRobotBounded(String instructions) {HashMap<Integer,Set<Integer>>mp=new HashMap<>();mp.put(0,new HashSet<Integer>());mp.get(0).add(0);int x=0,y=0,d=1;int[][]dirs=new int[][]{{-1,0},{0,1},{1,0},{0,-1}};int n=instructions.length()*4;StringBuilder sb=new StringBuilder();for(int i=0;i<4;i++){sb.append(instructions);}String ni=sb.toString();for(int i=0;i<n;i++){char c=ni.charAt(i);if(c=='L'){d=(d+3)%4;}else if(c=='R'){d=(d+1)%4;}else{x+=dirs[d][0];y+=dirs[d][1];if(mp.containsKey(x)){if(mp.get(x).contains(y)){System.out.println("i:"+i+", x:"+x+", y:"+y);return true;}else{mp.get(x).add(y);}}else{mp.put(x,new HashSet<Integer>());mp.get(x).add(y);}}}return false;}
}

3.2 LC874. 模拟行走机器人

3.2.1 原题答案

1 代码
    public int robotSim(int[] commands, int[][] obstacles) {int[][]dirs=new int[][]{{-1,0},{0,1},{1,0},{0,-1}};int x=0,y=0,d=1;HashSet<Integer>set=new HashSet<>();for(int i=0;i<obstacles.length;i++){set.add(obstacles[i][0]*60002+obstacles[i][1]);}int ans=0;for(int i=0;i<commands.length;i++){if(commands[i]<0){if(commands[i]==-2){d=(d+3)%4;}else if(commands[i]==-1){d=(d+1)%4;}}else{for(int j=0;j<commands[i];j++){if(set.contains((x+dirs[d][0])*60002+y+dirs[d][1]))break;x+=dirs[d][0];y+=dirs[d][1];ans=Math.max(ans,x*x+y*y);}}}return ans;}
2 Q1: “set.add(obstacles[i][0]*60002+obstacles[i][1]);中, 60001 怎么来的?10001就不行“

obstacle的坐标范围是正负3w。如果10001, (1, 0)和(0, 10001)就会撞到一起,但是如果乘以一个比6w严格大的数,那么每一个二维坐标被一个一维度的id标识时能保证唯一性

3 Q1: 机器人如何以最快的速度知道自己能走的最大步子, 而不是走一步看一步?

3.2.2 在3.2.1中规定机器人一次性走的步子最大是9, 那么可以把所有的障碍点都存到set中,然后枚举每一步,查看是否撞倒了障碍点,这样复杂度还是不高,假如现在机器人每一次走的最大步子是1000,如何让机器人以最小的复杂度知道自己可以向前走多少步呢?

1 思路一:可以用两个二维set存储所有的坐标,一个存储所有横轴上的障碍物,另一个存储纵轴,遍历当前方向上的哈希表,判断是否有在[from, to]的中间值,有则直接截断
class Solution {
private:// 1右 -1左vector<pair<int, int>> MOVE = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};public:int robotSim(vector<int>& commands, vector<vector<int>>& obstacles) {unordered_map<int, set<int>> row;unordered_map<int, set<int>> col;for (auto&& arr : obstacles) {col[arr[0]].insert(arr[1]);row[arr[1]].insert(arr[0]);}int ans = 0;// 起始方向是北int pos = 0;int x = 0, y = 0;for (int num : commands) {// 向右if (num == -1) {pos = (pos + 1) % 4;} // 向左else if (num == -2) {pos = (pos - 1 + 4) % 4;} // moveelse {auto [movX, movY] = MOVE[pos];                // set的参数分分清除// y轴方向移动if (movY) {y = is_between(col[x], y, y + num * movY, movY);} // x轴方向移动else {x = is_between(row[y], x, x + num * movX, movX);}}ans = max(ans, x * x + y * y);}return ans;}int is_between(set<int>& st, int from, int to, int flag = 1) {// lower 和 upper 的使用注意// 正向if (flag > 0) {auto it = st.upper_bound(from);if (it == st.end()) {return to;} else if (*it > to) {return to;} else {return *it - 1;}} // 逆向else {if (st.size() == 0) {return to;}auto it = st.lower_bound(from);it--;if (it == st.end()) {return to;} else if (*it > from) {return to;} else if (*it < to) {return to;} else {return *it + 1;}}}
};
2 思路二:(通过了100%的case)

可以用两个二维treeset存储所有的坐标,一个存储所有横轴上的有序障碍物,另一个存储纵轴,利用二分查找前方距离自己最近的障碍物,看看自己当前可以最多向前移动多少步。

二分查找时需要注意floor,ceil,lower和higher这几个函数的区别:

在使用 Java 的 TreeMapTreeSet 进行二分查找时,确实需要注意 floor, ceil, lowerhigher 这几个函数的区别。它们都是用来在有序集合中查找特定元素的,但行为略有不同:

对于 TreeMap

  • floorKey(K key): 返回小于或等于给定键的最大键。
  • ceilingKey(K key): 返回大于或等于给定键的最小键。
  • lowerKey(K key): 返回严格小于给定键的最大键。
  • higherKey(K key): 返回严格大于给定键的最小键。

对于 TreeSet

  • floor(E e): 返回小于或等于给定元素的最大元素。
  • ceiling(E e): 返回大于或等于给定元素的最小元素。
  • lower(E e): 返回严格小于给定元素的最大元素。
  • higher(E e): 返回严格大于给定元素的最小元素。

注意事项:

  1. 等于情况的处理floorceiling 方法包含等于的情况,而 lowerhigher 方法则不包括等于的情况。

  2. 返回值的类型:在 TreeMap 中,floorKey, ceilingKey, lowerKey, 和 higherKey 返回键的值;而在 TreeSet 中,floor, ceiling, lower, 和 higher 返回元素本身。

  3. 使用场景:根据您的查找需求(是否包括等于的情况,查找的是键还是元素),选择合适的方法。

在进行二分查找或者需要快速找到最接近的元素时,合理利用这些方法可以大大提高效率和代码的可读性。

代码:
import java.util.*;class Solution {public int robotSim(int[] commands, int[][] obstacles) {// 横轴和纵轴上的有序障碍物集合TreeMap<Integer, TreeSet<Integer>> rowMap = new TreeMap<>();TreeMap<Integer, TreeSet<Integer>> colMap = new TreeMap<>();// 初始化障碍物集合for (int[] obstacle : obstacles) {int x = obstacle[0], y = obstacle[1];rowMap.putIfAbsent(x, new TreeSet<>());colMap.putIfAbsent(y, new TreeSet<>());rowMap.get(x).add(y);colMap.get(y).add(x);}int x = 0, y = 0, direction = 0; // 初始坐标和方向(北)int[][] moves = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 北、东、南、西int maxDistance = 0;for (int cmd : commands) {if (cmd == -1) { // 右转direction = (direction + 1) % 4;} else if (cmd == -2) { // 左转direction = (direction + 3) % 4;} else { // 移动int dx = moves[direction][0];int dy = moves[direction][1];if (dx != 0) {x = getNextPosition(colMap, x, y, dx, cmd);} else {y = getNextPosition(rowMap, y, x, dy, cmd);}maxDistance = Math.max(maxDistance, x * x + y * y);}}return maxDistance;}private int getNextPosition(TreeMap<Integer, TreeSet<Integer>> map, int pos, int fixedPos, int delta, int steps) {TreeSet<Integer> set = map.getOrDefault(fixedPos, new TreeSet<>());if (delta > 0) {Integer higher = set.higher(pos);if (higher != null) {return Math.min(pos + steps, higher - 1);}} else {Integer lower = set.lower(pos);if (lower != null) {return Math.max(pos - steps, lower + 1);}}return pos + steps * delta;}
}

这篇关于leetcode网格题目中的上下左右四个方向和旋转90度的数量关系的代码表示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/586156

相关文章

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

Java中ArrayList与顺序表示例详解

《Java中ArrayList与顺序表示例详解》顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构,:本文主要介绍Java中ArrayList与... 目录前言一、Java集合框架核心接口与分类ArrayList二、顺序表数据结构中的顺序表三、常用代码手动

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

Java中自旋锁与CAS机制的深层关系与区别

《Java中自旋锁与CAS机制的深层关系与区别》CAS算法即比较并替换,是一种实现并发编程时常用到的算法,Java并发包中的很多类都使用了CAS算法,:本文主要介绍Java中自旋锁与CAS机制深层... 目录1. 引言2. 比较并交换 (Compare-and-Swap, CAS) 核心原理2.1 CAS

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

Python结合Free Spire.PDF for Python实现PDF页面旋转

《Python结合FreeSpire.PDFforPython实现PDF页面旋转》在日常办公或文档处理中,我们经常会遇到PDF页面方向错误的问题,本文将分享如何用Python结合FreeSpir... 目录基础实现:单页PDF精准旋转完整代码代码解析进阶操作:覆盖多场景旋转需求1. 旋转指定角度(90/27

Springmvc常用的注解代码示例

《Springmvc常用的注解代码示例》本文介绍了SpringMVC中常用的控制器和请求映射注解,包括@Controller、@RequestMapping等,以及请求参数绑定注解,如@Request... 目录一、控制器与请求映射注解二、请求参数绑定注解三、其他常用注解(扩展)四、注解使用注意事项一、控制