通过Bochs分析Lilo启动Linux内核的过程

2024-01-08 20:20

本文主要是介绍通过Bochs分析Lilo启动Linux内核的过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. Bochs调试

参考:http://www.cnblogs.com/long123king/p/3414884.html

http://bochs.sourceforge.net/cgi-bin/topper.pl?name=New+Bochs+Documentation&url=http://bochs.sourceforge.net/doc/docbook

 

类似的文章:http://www.cnblogs.com/wanghj-dz/archive/2011/05/12/2044862.html

 

关于IO端口的列表:

http://bochs.sourceforge.net/techspec/PORTS.LST

http://wiki.osdev.org/I/O_Ports

 

2. 环境简单描述

通过VS2012+Bochs进行Bochs源码以及API两个级别的调试。

 

Linux的版本, TinyCore

 

3. 调试步骤

初始断点:
   1: [0x0000fffffff0] f000:fff0 (unk. ctxt): jmp far f000:e05b         ; ea5be000f0
   2: <bochs:1> u /10
   3: 000ffff0: (                    ): jmp far f000:e05b         ; ea5be000f0
   4: 000ffff5: (                    ): xor word ptr ds:[bx+di], si ; 3131
   5: 000ffff7: (                    ): das                       ; 2f
   6: 000ffff8: (                    ): xor word ptr ds:[bx+di], si ; 3131
   7: 000ffffa: (                    ): das                       ; 2f
   8: 000ffffb: (                    ): xor word ptr ss:[bp+si], si ; 3132
   9: 000ffffd: (                    ): add ah, bh                ; 00fc
  10: 000fffff: (                    ): retf                      ; cb
  11: 00100000: (                    ): int 0xcd                  ; cdcd
  12: 00100002: (                    ): int 0xcd                  ; cdcd

可以看到,初始断点在0xFFFF0处断了下来,这里对应的是BIOS程序。

然后会跳转到f000:e05b(000fe05b)处执行,看一下这里的代码

   1: <bochs:8> u /16
   2: 000fe05b: (                    ): xor ax, ax                ; 31c0
   3: 000fe05d: (                    ): out 0x0d, al              ; e60d
   4: 000fe05f: (                    ): out 0xda, al              ; e6da
   5: 000fe061: (                    ): mov al, 0xc0              ; b0c0
   6: 000fe063: (                    ): out 0xd6, al              ; e6d6
   7: 000fe065: (                    ): mov al, 0x00              ; b000
   8: 000fe067: (                    ): out 0xd4, al              ; e6d4
   9: 000fe069: (                    ): mov al, 0x0f              ; b00f
  10: 000fe06b: (                    ): out 0x70, al              ; e670
  11: 000fe06d: (                    ): in al, 0x71               ; e471
  12: 000fe06f: (                    ): mov bl, al                ; 88c3
  13: 000fe071: (                    ): mov al, 0x0f              ; b00f
  14: 000fe073: (                    ): out 0x70, al              ; e670
  15: 000fe075: (                    ): mov al, 0x00              ; b000
  16: 000fe077: (                    ): out 0x71, al              ; e671
  17: 000fe079: (                    ): mov al, bl                ; 88d8

涉及的端口有0x0d, 0xd4, 0xd6, 0xda,这些都是DMA处理器的端口;还有0x70, 0x71,这是读写CMOS RAM的端口,这里是读取RTC时钟。

再跳转

   1: (0) [0x0000000fe0a3] f000:e0a3 (unk. ctxt): cli                       ; fa
   2: <bochs:32> u /10
   3: 000fe0a3: (                    ): cli                       ; fa
   4: 000fe0a4: (                    ): mov ax, 0xfffe            ; b8feff
   5: 000fe0a7: (                    ): mov sp, ax                ; 89c4
   6: 000fe0a9: (                    ): xor ax, ax                ; 31c0
   7: 000fe0ab: (                    ): mov ds, ax                ; 8ed8
   8: 000fe0ad: (                    ): mov ss, ax                ; 8ed0
   9: 000fe0af: (                    ): mov byte ptr ds:0x4b0, bl ; 881eb004
  10: 000fe0b3: (                    ): cmp bl, 0xfe              ; 80fbfe
  11: 000fe0b6: (                    ): jnz .+3                   ; 7503
  12: 000fe0b8: (                    ): jmp .-18142               ; e922b9

这里是设置栈

 

0x7c00

我们知道,MBR里面的汇编代码会被BIOS加载到0x7c00处运行,因此我们在这里设置断点

   1: lb 0x7c00
   2: c
   1: (0) Breakpoint 1, 0x0000000000007c00 in ?? ()
   2: Next at t=73755932
   3: (0) [0x000000007c00] 0000:7c00 (unk. ctxt): cli                       ; fa
   4: <bochs:4> u /10
   5: 00007c00: (                    ): cli                       ; fa
   6: 00007c01: (                    ): jmp .+108                 ; eb6c
   7: 00007c03: (                    ): add byte ptr ds:[bx+si], al ; 0000
   8: 00007c05: (                    ): add byte ptr ds:[si+73], cl ; 004c49
   9: 00007c08: (                    ): dec sp                    ; 4c
  10: 00007c09: (                    ): dec di                    ; 4f
  11: 00007c0a: (                    ): add word ptr ds:[bx+si], ax ; 0100
  12: 00007c0c: (                    ): adc al, 0x00              ; 1400
  13: 00007c0e: (                    ): pop dx                    ; 5a
  14: 00007c0f: (                    ): add byte ptr ds:[bx+si], al ; 0000

既然是MBR,我们可以验证一下分区表

   1: <bochs:8> x/16wx 0x7c00+446
   2: [bochs]:
   3: 0x0000000000007dbe <bogus+       0>:    0x00010100      0x31510383      0x00000011      0x00005137
   4: 0x0000000000007dce <bogus+      16>:    0x00000000      0x00000000      0x00000000      0x00000000
   5: 0x0000000000007dde <bogus+      32>:    0x00000000      0x00000000      0x00000000      0x00000000
   6: 0x0000000000007dee <bogus+      48>:    0x00000000      0x00000000      0x00000000      0x00000000

分区表表明,只有一个分区,起始的逻辑扇区号为0x0000,包含的扇区个数的0x5137,因此该分区大小为:

0x5137 * 0x200 / 1024 = 10395 KB = 10.4MB,与我们使用的img大小相符

   1: 2014/02/14  11:45        10,653,696 hd10meg.img

下面我们分析MBR中的代码

   1: <bochs:13> u /20
   2: 00007c6f: (                    ): mov ax, 0x07c0            ; b8c007
   3: 00007c72: (                    ): mov ds, ax                ; 8ed8
   4: 00007c74: (                    ): mov word ptr ds:0x6a, es  ; 8c066a00
   5: 00007c78: (                    ): mov word ptr ds:0x68, si  ; 89366800
   6: 00007c7c: (                    ): mov word ptr ds:0x6c, bx  ; 891e6c00
   7: 00007c80: (                    ): mov byte ptr ds:0x6e, dl  ; 88166e00
   8: 00007c84: (                    ): mov ax, 0x8a00            ; b8008a
   9: 00007c87: (                    ): mov es, ax                ; 8ec0
  10: 00007c89: (                    ): mov cx, 0x0100            ; b90001
  11: 00007c8c: (                    ): sub si, si                ; 29f6
  12: 00007c8e: (                    ): sub di, di                ; 29ff
  13: 00007c90: (                    ): cld                       ; fc
  14: 00007c91: (                    ): rep movsw word ptr es:[di], word ptr ds:[si] ; f3a5
  15: 00007c93: (                    ): 
jmp far 8a00:0098
         ; ea9800008a
  16: 00007c
98
: (                    ): cli                       ; fa
  17: 00007c99: (                    ): mov ds, ax                ; 8ed8
  18: 00007c9b: (                    ): mov es, ax                ; 8ec0
  19: 00007c9d: (                    ): mov sp, 0xb000            ; bc00b0
  20: 00007ca0: (                    ): mov ax, 0x8000            ; b80080
  21: 00007ca3: (                    ): mov ss, ax                ; 8ed0

参考:http://blog.csdn.net/jphaoren/article/details/6954376

rep movsw的功能是将ds:si中的一段内存拷贝到es:di中去,一共拷贝cx个word。

而ds:0x6a, ds:0x68, ds:0x6c, ds:0x6e的值分别都是0

   1: Offset      0  1  2  3  4  5  6  7   8  9  A  B  C  D  E  F
   2:  
   3: 00000060   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 B8                  ?

所以,这段代码的作用是,将0x7c00处的内存拷贝到0x8a000处,一共拷贝0x100个word:

0x100 * sizeof(word) = 0x200 = 512Bytes=1扇区

相当于把整个MBR都拷贝到0x8a000处。

然后跳转指令jmp far 8a00:0098实际上就是恰好跳转到下一条指令cli处去执行。

   1: <bochs:14> lb 0x8a098
   2: <bochs:15> c
   3: (0) Breakpoint 2, 0x000000000008a098 in ?? ()
   4: Next at t=73756203
   5: (0) [0x00000008a098] 8a00:0098 (unk. ctxt): cli                       ; fa
   6: <bochs:16> u /10
   7: 0008a098: (                    ): cli                       ; fa
   8: 0008a099: (                    ): mov ds, ax                ; 8ed8
   9: 0008a09b: (                    ): mov es, ax                ; 8ec0
  10: 0008a09d: (                    ): mov sp, 0xb000            ; bc00b0
  11: 0008a0a0: (                    ): mov ax, 0x8000            ; b80080
  12: 0008a0a3: (                    ): mov ss, ax                ; 8ed0
  13: 0008a0a5: (                    ): sti                       ; fb
  14: 0008a0a6: (                    ): mov al, 0x0d              ; b00d
  15: 0008a0a8: (                    ): call .+87                 ; e85700
  16:
0008a0ab: ( ): mov al, 0x0a ; b00a

 

ax里面的值依然是0x8a00,因此,将数据段ds, es的段基址都设置成0x8a00,即MBR的起始地址;将栈段设置为0x8000:0xb000,即栈底为0x8b000,栈是向低地址方向扩展。

 

传递一个0x0d作为参数,然后调用call .+87,这是新的栈设置后的第一个函数。

   1: (0) [0x00000008a0a8] 8a00:00a8 (unk. ctxt): call .+87 (0x0008a102)    ; e85700
   2: <bochs:28> x/17bx 0x8aff0
   3: [bochs]:
   4: 0x000000000008aff0 <bogus+       0>:    0x00    0x00    0x00    0x00    0x00    0x00    0x00    0x00
   5: 0x000000000008aff8 <bogus+       8>:    0x00    0x00    0x00    0x00    0x00    0x00    0x00    0x00
   6: 0x000000000008b000 <bogus+      16>:    0x00
   7: <bochs:29> s
   8: Next at t=73756212
   9: (0) [0x00000008a102] 8a00:0102 (unk. ctxt): xor bh, bh                ; 30ff
  10: <bochs:30> x/17bx 0x8aff0
  11: [bochs]:
  12: 0x000000000008aff0 <bogus+       0>:    0x00    0x00    0x00    0x00    0x00    0x00    0x00    0x00
  13: 0x000000000008aff8 <bogus+       8>:    0x00    0x00    0x00    0x00    0x00    0x00    
0xab 0x00
  14: 0x000000000008b000 <bogus+      16>:    0x00

可见,返回地址0x00ab,即对应着0x0008a0ab,被压到了栈中。

   1: <bochs:31> u /16
   2: 0008a102: (                    ): xor bh, bh                ; 30ff
   3: 0008a104: (                    ): mov ah, 0x0e              ; b40e
   4: 0008a106: (                    ): int 0x10                  ; cd10
   5: 0008a108: (                    ): ret                       ; c3

这个函数做了什么?

INT 10H是BIOS系统调用指令,参考:http://en.wikipedia.org/wiki/INT_10

这个函数的功能是“打印”al中的字符,这里通过al传入的是0x0a,因此是打印了一个‘\r’字符。

再看下面的代码

   1: <bochs:38> u /10
   2: 0008a0ab: (                    ): mov al, 0x0a              ; b00a
   3: 0008a0ad: (                    ): call .+82                 ; e85200
   4: 0008a0b0: (                    ): mov al, 0x4c              ; b04c
   5: 0008a0b2: (                    ): call .+77                 ; e84d00
   6: 0008a0b5: (                    ): mov si, 0x0034            ; be3400
   7: 0008a0b8: (                    ): mov bx, 0x1000            ; bb0010

又分别打印了‘\n’‘L’两个字符。

看一下屏幕

image

真的打出了L字符。

我们不能再继续深入了,因为我们关心的是Linux内核的加载,而不是Lilo的代码实现。

转载于:https://www.cnblogs.com/long123king/p/3549267.html

这篇关于通过Bochs分析Lilo启动Linux内核的过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/584699

相关文章

Linux磁盘分区、格式化和挂载方式

《Linux磁盘分区、格式化和挂载方式》本文详细介绍了Linux系统中磁盘分区、格式化和挂载的基本操作步骤和命令,包括MBR和GPT分区表的区别、fdisk和gdisk命令的使用、常见的文件系统格式以... 目录一、磁盘分区表分类二、fdisk命令创建分区1、交互式的命令2、分区主分区3、创建扩展分区,然后

Linux中chmod权限设置方式

《Linux中chmod权限设置方式》本文介绍了Linux系统中文件和目录权限的设置方法,包括chmod、chown和chgrp命令的使用,以及权限模式和符号模式的详细说明,通过这些命令,用户可以灵活... 目录设置基本权限命令:chmod1、权限介绍2、chmod命令常见用法和示例3、文件权限详解4、ch

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Linux使用nohup命令在后台运行脚本

《Linux使用nohup命令在后台运行脚本》在Linux或类Unix系统中,后台运行脚本是一项非常实用的技能,尤其适用于需要长时间运行的任务或服务,本文我们来看看如何使用nohup命令在后台... 目录nohup 命令简介基本用法输出重定向& 符号的作用后台进程的特点注意事项实际应用场景长时间运行的任务服

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO