文本可视化之词云图的使用

2024-01-08 16:44

本文主要是介绍文本可视化之词云图的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境安装:
pip install  wordcloud -i  https://pypi.tuna.tsinghua.edu.cn/simple/ 
conda install  wordcloud
# -i 后面加镜像源网站

WordCloud(background_color,repeat,max_words=600,height=480, width=584, max_font_size,font_path colormap,mask,mode,collocations, prefer_horizontal)

相关参数:

  • background_color=‘white’, # 词云图的背景颜色,默认为 "black"
  • repeat=False, # 是否重复
  • max_words=600, # 词云图中显示的最大词语数量,默认为 200
  • height=480, width=584, # 图片尺寸
  • max_font_size=200, # 词云图中显示的最大字体大小,默认为 None
  • font_path=“C:/Windows/Fonts/FZSTK.TTF”, # 指定字体文件的路径,用于显示中文字符
  • colormap=“Reds”, # 指定词云图的颜色方案,默认为 "viridis"、“Reds”“Blues”“Greens”
  • mask=mask, # 词云图的形状,可以使用一个图片作为模板,一般结合imread(),将图片中不是白色的地方作为轮廓。
  • mode=“RGBA”, # 词云图的模式,可以设置为 "RGB""RGBA"
  • collocations=False# 否考虑词语搭配,默认为 True
  • prefer_horizontal=1# 控制词语水平摆放的频率,默认为 0.9

官方文档:https://github.com/amueller/word_cloud

英文词云图:
import matplotlib.pyplot as plt
from wordcloud import WordCloud# 这里是模拟读取文件 
text="""Python is a popular programming language.
It is widely used for web development, data analysis, and machine learning.
Python has a simple and readable syntax, making it easy to learn and use."""
# 创建词云对象
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)# 绘制词云图
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
plt.show()

在这里插入图片描述

注意:英文分隔符是默认空格,所有我们不用对英文进行拆分处理。但是如果是中文,就需要使用jieba分词,需要拆分文字。

其实上面这个例子不是特别全面,应该进行停用词处理,这里给大家讲一下官方给出的例子:

from os import path
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import osfrom wordcloud import WordCloud, STOPWORDS
# 获取当前脚本文件的目录路径,或者如果在IPython笔记本中运行,则获取当前工作目录。
d = path.dirname(__file__) if "__file__" in locals() else os.getcwd()# 读取文件
text = open(path.join(d, 'alice.txt')).read()
# 读取模板图像(就是你可以自定义词云图的样子)
alice_mask = np.array(Image.open(path.join(d, "alice_mask.png")))
# 创建了一个停用词的集合,并添加了一个自定义的停用词"said"
stopwords = set(STOPWORDS)
stopwords.add("said")
# 创建词云图对象
wc = WordCloud(background_color="white", max_words=2000, mask=alice_mask,stopwords=stopwords, contour_width=3, contour_color='steelblue')wc.generate(text)
# 存储
wc.to_file(path.join(d, "alice.png"))
# show
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.figure()
plt.show()

在这里插入图片描述

注意模板图像一般是黑色的,相当于只填充黑色的地方,我们看一下结果:

在这里插入图片描述

十分优美!

中文词云图:
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import jieba
from PIL import Image
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来显示中文,不然会乱码
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
text = """"
人生苦短,我用Python。Python是一门简单易学的编程语言,
广泛应用于数据分析、人工智能和Web开发领域。Python拥有丰富的第三方库和生态系统,
为开发者提供了很多便利。学习Python,让你的编程之路更加愉快。
"""# 使用jieba进行中文分词
seg_list = jieba.cut(text, cut_all=False)
seg_text = ' '.join(seg_list)
print(seg_text)# 创建词云对象   
wordcloud = WordCloud(font_path=r'msyh.ttc',width=800, height=400, background_color='white').generate(seg_text)
# wordcloud = WordCloud(font_path=r'C:/Windows/Fonts/FZSTK.TTF',width=800, height=400, background_color='white').generate(seg_text)
# 绘制词云图 
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
# 保存词云图为图片文件
wordcloud.to_file("wordcloud.png")
plt.show()

在这里插入图片描述

读取本地文件:
from wordcloud import WordCloud, ImageColorGenerator
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from imageio import imread
text = """Python is a popular programming language.
It is widely used for web development, data analysis, and machine learning.
Python has a simple and readable syntax, making it easy to learn and use."""
# 读取图像并转换为数组mask=np.array(Image.open("./img.png"))# 创建词云对象,并设置 mask 参数
wordcloud = WordCloud(mask=mask,width=800, height=400, background_color='white')# 生成词云图
wordcloud.generate(text)# 显示词云图
plt.axis("off")
plt.imshow(wordcloud, interpolation="bilinear")
plt.show()

在这里插入图片描述

自定义词云形状:
from wordcloud import WordCloud, ImageColorGenerator
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from imageio import imread
text = """Python is a popular programming language.
It is widely used for web development, data analysis, and machine learning.
Python has a simple and readable syntax, making it easy to learn and use."""
# 读取图像并转换为数组x, y = np.ogrid[:300, :300]mask = (x - 150) ** 2 + (y - 150) ** 2 > 130 ** 2
mask = 255 * mask.astype(int)# 创建词云对象,并设置 mask 参数
wordcloud = WordCloud(mask=mask,width=800, height=400, background_color='white')# 生成词云图
wordcloud.generate(text)# 显示词云图
plt.axis("off")
plt.imshow(wordcloud, interpolation="bilinear")
plt.show()

在这里插入图片描述

总结:

​ 通过本文的介绍,我们深入了解了词云图的使用和相关参数,并学会了生成中文词云图、英文词云图以及自定义词云图的样式。词云图作为一种强大的数据可视化工具,可以帮助我们直观地了解文本数据的关键词和主题。无论是从事数据分析、文本挖掘还是对话题进行可视化呈现,词云图都能提供有价值的信息。

​ 在创建词云图时,我们可以根据需求调整不同的参数,如背景颜色、词数限制和停用词等,以达到最佳效果。此外,我们还可以通过选择合适的字体、设置自定义形状和调整颜色、轮廓等来创建独特的词云图。

​ 希望本文对你理解词云图的基本原理和应用提供了帮助,并激发了你在数据可视化方面的创造力。无论是在学术研究、商业分析还是个人项目中,词云图都是一种强大而灵活的工具,能够使你的数据更具有吸引力和可解释性。

​ 开始探索词云图的奇妙世界吧!让我们用词云图来揭示文本背后的故事,展示文字的魅力,带领读者进入一个充满词语和想象力的视觉盛宴。无论是文字的力量还是数据的美感,词云图都能为我们带来全新的体验。让我们一起用词云图来发现和分享这个世界上的无限可能性!

这篇关于文本可视化之词云图的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/584134

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念