文本可视化之词云图的使用

2024-01-08 16:44

本文主要是介绍文本可视化之词云图的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境安装:
pip install  wordcloud -i  https://pypi.tuna.tsinghua.edu.cn/simple/ 
conda install  wordcloud
# -i 后面加镜像源网站

WordCloud(background_color,repeat,max_words=600,height=480, width=584, max_font_size,font_path colormap,mask,mode,collocations, prefer_horizontal)

相关参数:

  • background_color=‘white’, # 词云图的背景颜色,默认为 "black"
  • repeat=False, # 是否重复
  • max_words=600, # 词云图中显示的最大词语数量,默认为 200
  • height=480, width=584, # 图片尺寸
  • max_font_size=200, # 词云图中显示的最大字体大小,默认为 None
  • font_path=“C:/Windows/Fonts/FZSTK.TTF”, # 指定字体文件的路径,用于显示中文字符
  • colormap=“Reds”, # 指定词云图的颜色方案,默认为 "viridis"、“Reds”“Blues”“Greens”
  • mask=mask, # 词云图的形状,可以使用一个图片作为模板,一般结合imread(),将图片中不是白色的地方作为轮廓。
  • mode=“RGBA”, # 词云图的模式,可以设置为 "RGB""RGBA"
  • collocations=False# 否考虑词语搭配,默认为 True
  • prefer_horizontal=1# 控制词语水平摆放的频率,默认为 0.9

官方文档:https://github.com/amueller/word_cloud

英文词云图:
import matplotlib.pyplot as plt
from wordcloud import WordCloud# 这里是模拟读取文件 
text="""Python is a popular programming language.
It is widely used for web development, data analysis, and machine learning.
Python has a simple and readable syntax, making it easy to learn and use."""
# 创建词云对象
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)# 绘制词云图
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
plt.show()

在这里插入图片描述

注意:英文分隔符是默认空格,所有我们不用对英文进行拆分处理。但是如果是中文,就需要使用jieba分词,需要拆分文字。

其实上面这个例子不是特别全面,应该进行停用词处理,这里给大家讲一下官方给出的例子:

from os import path
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import osfrom wordcloud import WordCloud, STOPWORDS
# 获取当前脚本文件的目录路径,或者如果在IPython笔记本中运行,则获取当前工作目录。
d = path.dirname(__file__) if "__file__" in locals() else os.getcwd()# 读取文件
text = open(path.join(d, 'alice.txt')).read()
# 读取模板图像(就是你可以自定义词云图的样子)
alice_mask = np.array(Image.open(path.join(d, "alice_mask.png")))
# 创建了一个停用词的集合,并添加了一个自定义的停用词"said"
stopwords = set(STOPWORDS)
stopwords.add("said")
# 创建词云图对象
wc = WordCloud(background_color="white", max_words=2000, mask=alice_mask,stopwords=stopwords, contour_width=3, contour_color='steelblue')wc.generate(text)
# 存储
wc.to_file(path.join(d, "alice.png"))
# show
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.figure()
plt.show()

在这里插入图片描述

注意模板图像一般是黑色的,相当于只填充黑色的地方,我们看一下结果:

在这里插入图片描述

十分优美!

中文词云图:
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import jieba
from PIL import Image
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来显示中文,不然会乱码
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
text = """"
人生苦短,我用Python。Python是一门简单易学的编程语言,
广泛应用于数据分析、人工智能和Web开发领域。Python拥有丰富的第三方库和生态系统,
为开发者提供了很多便利。学习Python,让你的编程之路更加愉快。
"""# 使用jieba进行中文分词
seg_list = jieba.cut(text, cut_all=False)
seg_text = ' '.join(seg_list)
print(seg_text)# 创建词云对象   
wordcloud = WordCloud(font_path=r'msyh.ttc',width=800, height=400, background_color='white').generate(seg_text)
# wordcloud = WordCloud(font_path=r'C:/Windows/Fonts/FZSTK.TTF',width=800, height=400, background_color='white').generate(seg_text)
# 绘制词云图 
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
# 保存词云图为图片文件
wordcloud.to_file("wordcloud.png")
plt.show()

在这里插入图片描述

读取本地文件:
from wordcloud import WordCloud, ImageColorGenerator
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from imageio import imread
text = """Python is a popular programming language.
It is widely used for web development, data analysis, and machine learning.
Python has a simple and readable syntax, making it easy to learn and use."""
# 读取图像并转换为数组mask=np.array(Image.open("./img.png"))# 创建词云对象,并设置 mask 参数
wordcloud = WordCloud(mask=mask,width=800, height=400, background_color='white')# 生成词云图
wordcloud.generate(text)# 显示词云图
plt.axis("off")
plt.imshow(wordcloud, interpolation="bilinear")
plt.show()

在这里插入图片描述

自定义词云形状:
from wordcloud import WordCloud, ImageColorGenerator
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from imageio import imread
text = """Python is a popular programming language.
It is widely used for web development, data analysis, and machine learning.
Python has a simple and readable syntax, making it easy to learn and use."""
# 读取图像并转换为数组x, y = np.ogrid[:300, :300]mask = (x - 150) ** 2 + (y - 150) ** 2 > 130 ** 2
mask = 255 * mask.astype(int)# 创建词云对象,并设置 mask 参数
wordcloud = WordCloud(mask=mask,width=800, height=400, background_color='white')# 生成词云图
wordcloud.generate(text)# 显示词云图
plt.axis("off")
plt.imshow(wordcloud, interpolation="bilinear")
plt.show()

在这里插入图片描述

总结:

​ 通过本文的介绍,我们深入了解了词云图的使用和相关参数,并学会了生成中文词云图、英文词云图以及自定义词云图的样式。词云图作为一种强大的数据可视化工具,可以帮助我们直观地了解文本数据的关键词和主题。无论是从事数据分析、文本挖掘还是对话题进行可视化呈现,词云图都能提供有价值的信息。

​ 在创建词云图时,我们可以根据需求调整不同的参数,如背景颜色、词数限制和停用词等,以达到最佳效果。此外,我们还可以通过选择合适的字体、设置自定义形状和调整颜色、轮廓等来创建独特的词云图。

​ 希望本文对你理解词云图的基本原理和应用提供了帮助,并激发了你在数据可视化方面的创造力。无论是在学术研究、商业分析还是个人项目中,词云图都是一种强大而灵活的工具,能够使你的数据更具有吸引力和可解释性。

​ 开始探索词云图的奇妙世界吧!让我们用词云图来揭示文本背后的故事,展示文字的魅力,带领读者进入一个充满词语和想象力的视觉盛宴。无论是文字的力量还是数据的美感,词云图都能为我们带来全新的体验。让我们一起用词云图来发现和分享这个世界上的无限可能性!

这篇关于文本可视化之词云图的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/584134

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa