【tensorflowflutterweb】机器学习模型怎样用到前端上(未写完)

本文主要是介绍【tensorflowflutterweb】机器学习模型怎样用到前端上(未写完),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

书接上回

        在上一章 我们谈了怎么根据项目需求构建一个简单的机器学习模型。

     ​​​​​​ ​​​​​​【tensorflow&flutter】自己写个机器学习模型用在项目上?-CSDN博客文章浏览阅读852次,点赞22次,收藏15次。【tensorflow&flutter】自己写个机器学习模型用在项目上? 拍摄APP项目上线有一阵了,每天的拍摄数据呈现波动上升状态、业务方需要对数据进行加工,如果能有对未来的数据量的预测就好了 。https://blog.csdn.net/qq_36544007/article/details/135404222?spm=1001.2014.3001.5502        其实上期的项目完全可以用tensorflow serving去获取数据,或者是一个web 页面去加载tensorflow js去计算更加方便部署。

        哦,至于你说什么是tensorflow serving、什么是tensorflow js,本期咱们说一下机器学习模型用在前端的几种方式。

部署机器学习模型的方式

        咱们还是继续以tensorflow为例子(大家也可以了解一下PyTorch)

先说总结

         TensorFlow 可提供强大的功能,以便您在任何环境(包括服务器、边缘设备、浏览器、移动设备、微控制器、CPU、GPU、FPGA)中部署模型。TensorFlow Serving 可以在先进的处理器(包括 Google 的自定义张量处理单元 [TPU])上以生产规模运行机器学习模型。
        如果您需要在靠近数据源的位置分析数据,以缩短延迟时间并更好地保护数据隐私,可以借助 TensorFlow Lite 框架在移动设备、边缘计算设备甚至微控制器上运行模型,还可以借助 TensorFlow.js 框架仅使用网络浏览器就能运行机器学习模型

  就是如上所说的一样 可以在设备上、浏览器中、本地云端都可以部署模型。

1.Tensorflow Serving

        先说一下tensorflow serving这种常规后端,直接返回推断好的数据。 比如千人千面的淘宝推荐,头条不同的广告,又或者是这种与前端相对交互更多的:交互式推荐在外卖场景的探索与应用。

简易使用

          很简单 大家可以试一试。先下载Docker,然后遵循以下步骤:

# Download the TensorFlow Serving Docker image and repo 下载TensorFlow Serving Docker镜像
docker pull tensorflow/serving
# 获取模型
git clone https://github.com/tensorflow/serving
# 定义模型
TESTDATA="$(pwd)/serving/tensorflow_serving/servables/tensorflow/testdata"# Start TensorFlow Serving container and open the REST API port 启动TensorFlow Serving容器并打开REST API端口
docker run -t --rm -p 8501:8501 \-v "$TESTDATA/saved_model_half_plus_two_cpu:/models/half_plus_two" \-e MODEL_NAME=half_plus_two \tensorflow/serving &# Query the model using the predict API  本地就可以请求了
curl -d '{"instances": [1.0, 2.0, 5.0]}' \-X POST http://localhost:8501/v1/models/half_plus_two:predict# Returns => { "predictions": [2.5, 3.0, 4.5] }

介绍 

         使用docker 实现了:只需要传递参数请求就可以输出推断结果的最简单节点。遇到问题可以参考官方链接或者网上查询。 

        比如大家制作好的模型/网上更有实力的模型/针对项目强化学习的模型 都可以通过这样的情况进行部署,然后通过后端包装一下、或者直接调用。

        适用的场景就如上面所说,还包括我上篇文章的数据推断、票房预测、一次推断多处使用,或者计算量数据、资源来自服务器。

        

结语

      我一开始学习机器学习 大家都是介绍其中的部分 比如就介绍了怎么建模,具体技术细节,没有说从前端、或是其他角度说介绍这件事。在我学习的前期有一种盲人摸象的感觉,希望我写的文章对你有帮助。 

参考文档

docker安装&tensorflow serving使用

tensorflow 官网 部署模型

这篇关于【tensorflowflutterweb】机器学习模型怎样用到前端上(未写完)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583556

相关文章

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

CSS弹性布局常用设置方式

《CSS弹性布局常用设置方式》文章总结了CSS布局与样式的常用属性和技巧,包括视口单位、弹性盒子布局、浮动元素、背景和边框样式、文本和阴影效果、溢出隐藏、定位以及背景渐变等,通过这些技巧,可以实现复杂... 一、单位元素vm 1vm 为视口的1%vh 视口高的1%vmin 参照长边vmax 参照长边re

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

css渐变色背景|<gradient示例详解

《css渐变色背景|<gradient示例详解》CSS渐变是一种从一种颜色平滑过渡到另一种颜色的效果,可以作为元素的背景,它包括线性渐变、径向渐变和锥形渐变,本文介绍css渐变色背景|<gradien... 使用渐变色作为背景可以直接将渐China编程变色用作元素的背景,可以看做是一种特殊的背景图片。(是作为背

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus