[python]使用pyqt5搭建yolov8 竹签计数一次性筷子计数系统

本文主要是介绍[python]使用pyqt5搭建yolov8 竹签计数一次性筷子计数系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【官方框架地址】

github地址:https://github.com/ultralytics/ultralytics
【算法介绍】

Yolov8是一种先进的深度学习算法,用于目标检测任务,特别是针对图像中物体的实时检测。它是Yolov3和Yolov4之后的又一重要迭代,带来了诸多改进和新特性。本文将详细介绍Yolov8算法的原理、特点、实现细节以及与其他目标检测算法的比较。

一、Yolov8算法原理

Yolov8采用了一种称为"You Only Look Once"(YOLO)的实时目标检测方法。与传统的目标检测方法不同,YOLO将目标检测视为一个回归问题,将图像划分为网格,每个网格预测固定数量的边界框,并识别其中存在的物体。Yolov8在YOLO系列算法的基础上,引入了新的技术来提高准确性和效率。

二、Yolov8特点

高效性:Yolov8采用了轻量级的网络结构,降低了计算复杂度,实现了高效的实时目标检测。
高精度:通过引入新的损失函数和训练技巧,Yolov8在各种数据集上实现了高精度的目标检测。
多尺度特征融合:Yolov8采用了多尺度特征融合策略,提高了对不同大小目标的检测能力。
上下文信息利用:Yolov8利用了上下文信息来提高检测性能,使得模型能够更好地理解图像内容。
强大的锚框设计:Yolov8采用了强大的锚框设计,提高了预测边界框的准确性。

三、Yolov8实现细节

网络结构:Yolov8采用了轻量级的网络结构,包括卷积层、池化层和上采样层等。这种网络结构能够快速处理输入图像,并生成物体的边界框和类别信息。
损失函数:Yolov8采用了新的损失函数,包括坐标损失、置信度损失和类别损失等。这些损失函数共同作用,使得模型能够学习到更准确的边界框位置和类别信息。
多尺度特征融合:为了提高对不同大小目标的检测能力,Yolov8采用了多尺度特征融合策略。通过在不同尺度的特征图上进行预测,模型能够更好地处理不同大小的物体。
训练技巧:为了提高模型的训练效率和准确性,Yolov8采用了一系列训练技巧,包括数据增强、使用混合精度训练和使用标签平滑等。这些技巧有助于提高模型的泛化能力。
锚框设计:Yolov8采用了强大的锚框设计,根据不同的场景和任务需求,设计了多种不同大小的锚框。这些锚框能够帮助模型更好地预测物体的边界框位置。

四、与其他目标检测算法的比较

与传统的目标检测算法(如Faster R-CNN和SSD)相比,Yolov8具有更高的实时性和准确性。与YOLO系列的其他版本(如YOLOv3和YOLOv4)相比,Yolov8在准确性和效率上均有所提升。此外,与基于Transformer的目标检测算法(如DETR和Sparse Transformer)相比,Yolov8具有更快的速度和更高的准确性。

总之,Yolov8是一种高效、准确的目标检测算法,具有广泛的应用前景。它的出现为实时目标检测任务提供了新的解决方案,推动了相关领域的发展。

【效果展示】


【实现部分代码】

    def start_camera(self, camera_index=0):self.signal.emit('正在检测摄像头中...','camera')cap = cv2.VideoCapture(camera_index)self.camera_open = Truewhile self.camera_open:ret, frame = cap.read()if not ret:self.action_2.setText('打开摄像头')self.camera_open = Falseself.signal.emit('摄像头检测已停止!', 'camera')breakresult_lists = self.detector.inference_image(frame, False, self.dsb_conf.value(), self.dsb_iou.value())frame = self.detector.draw_image(result_lists, frame)res = self.get_result_str(result_lists)self.signal.emit(res, 'res')frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)img = QImage(frame.data, frame.shape[1], frame.shape[0], QImage.Format_RGB888)self.picture.setPixmap(QPixmap.fromImage(img))time.sleep(0.001)cap.release()self.action_2.setText('打开摄像头')self.camera_open = Falseself.signal.emit('摄像头检测已停止!', 'camera')self.picture.setPixmap(QPixmap(""))

【模型数据集】

模型采用yolov8n模型,数据集为210张筷子计数数据集,数据集详情介绍如下:

图片数量(jpg文件个数):210
标注数量(xml文件个数):210
标注数量(txt文件个数):210
标注类别数:1
标注类别名称:["label"]
每个类别标注的框数:
label 框数 = 14872
总框数:14872
使用标注工具:labelImg

数据集下载地址:

https://download.csdn.net/download/FL1623863129/88703672

【视频演示】


【源码下载】


【测试环境】

anaconda3+python3.8

yolov8环境
 

这篇关于[python]使用pyqt5搭建yolov8 竹签计数一次性筷子计数系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582957

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in