算法第十三天-解码方法

2024-01-08 07:12

本文主要是介绍算法第十三天-解码方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解码方法

题目要求


解题思路

来自【宫水三叶】

基本分析

我们称一个解码内容为一个item
根据题意,每个item可以由一个数字组成,也可以由两个数字组成。
数据范围为100,很具有迷惑性,可能会有不少同学会想使用DFS进行暴力搜索。
我们可以大致分析一下这样子的做法是否可行:不失为一般性的考虑字符串s中的任意位置i,位置i既可以作为一个独立item,也可以与上一位置组成新item,那么相当于每个位置都有两种分割选择(先不考虑分割结果的合法性问题),这样子做法的复杂度是 O ( 2 n ) O(2^n) O(2n)的,当n范围是100时,远超我们计算机单秒运算量 ( 1 0 7 ) (10^7) (107)。及时我们将[判断分割结果是否合法]的操作放到暴力搜索过程中做剪枝,也与我们的单秒运算量相差很远。
递归的方法不可行,我们需要考虑递推的解法。

动态规划

这其实时一道字符串类的动态规划题,不难发现对于字符串s的某个位置i而言,我们只关心[位置i自己能否形成独立item]和[位置i能够与上一位置(i-1)能否形成item],而不关心i-1之前的位置。

有了以上分析,我们可以从前往后处理字符串s,使用一个数组记录以字符串s的每一位作为结果的解码方案数。即定义 f [ i ] f[i] f[i]为考虑前i个字符的解码方案数。
对于字符串s的任意位置i而言,其存在三种情况:

  • 只能由位置i的单独作为一个item,设为a,转移的前提是a的数值范围为[1,9],转移逻辑为f[i] = f[i-1].
  • 只能由位置i的与前一位置(i-1)共同作为一个item,设为b,转移的前提时b的数值范围为[10,26],转移逻辑为f[i] = f[i-2]
  • 位置i既能作为独立item也能与上一位置形成item,转移逻辑为f[i] = f[i-1] +f[i-2]
    因此,我们有如下转移方程:
    { f [ i ] = f [ i − 1 ] , 1 ≤ a ≤ 9 f [ i ] = f [ i − 2 ] , 10 ≤ b ≤ 26 f [ i ] = f [ i − 1 ] + f [ i − 2 ] , 1 ≤ a ≤ 9 , 10 ≤ b ≤ 26 \left\{\begin{aligned} f[i] = f[i-1],1\le a \le 9\\ f[i] = f[i-2],10\le b \le 26\\ f[i] = f[i-1]+f[i-2],1\le a \le 9,10\le b \le 26\\ \end{aligned} \right. f[i]=f[i1],1a9f[i]=f[i2],10b26f[i]=f[i1]+f[i2],1a9,10b26
    其他细节:由于本题存在前导零,而前导零属于无效item。可以进行特判,但个人习惯往字符串头部追加空格作为哨兵,追加空格既可以避免讨论前导零,也能使下标从1开始,简化f[i-1]等负数下标的判断。

代码

class Solution:def numDecodings(self, s: str) -> int:n = len(s)s = ' ' + sf =[0] *(n+1)f[0]=1for i in range(1,n+1):a = ord(s[i])-ord('0')b = (ord(s[i-1]) -ord('0')) * 10 + ord(s[i])-ord('0')if 0<a<=9:f[i] =f[i-1]if 10<=b<=26:f[i] +=f[i-2]return f[n]

复杂度分析

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

空间优化

不难发现,我们转移f[i]时只依赖f[i-1] 和 f[i-2]两个状态。因此我们可以采用与[滚动数组]类似的思路,只创建长度为3的数组,通过取余的方式来复用不再需要的下标。

代码

class Solution:def numDecodings(self, s: str) -> int:n = len(s)s = ' ' + sf = [0] * 3f[0] = 1for i in range(1,n + 1):f[i % 3] = 0a = ord(s[i]) - ord('0')b = ( ord(s[i - 1]) - ord('0') ) * 10 + ord(s[i]) - ord('0')if 1 <= a <= 9:f[i % 3] = f[(i - 1) % 3]if 10 <= b <= 26:f[i % 3] += f[(i - 2) % 3]return f[n % 3]

复杂度分析

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

这篇关于算法第十三天-解码方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582668

相关文章

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller

Java调用DeepSeek API的8个高频坑与解决方法

《Java调用DeepSeekAPI的8个高频坑与解决方法》现在大模型开发特别火,DeepSeek因为中文理解好、反应快、还便宜,不少Java开发者都用它,本文整理了最常踩的8个坑,希望对... 目录引言一、坑 1:Token 过期未处理,鉴权异常引发服务中断问题本质典型错误代码解决方案:实现 Token

Nginx 访问控制的多种方法

《Nginx访问控制的多种方法》本文系统介绍了Nginx实现Web访问控制的多种方法,包括IP黑白名单、路径/方法/参数控制、HTTP基本认证、防盗链机制、客户端证书校验、限速限流、地理位置控制等基... 目录一、IP 白名单与黑名单1. 允许/拒绝指定IP2. 全局黑名单二、基于路径、方法、参数的访问控制

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.

MySQL底层文件的查看和修改方法

《MySQL底层文件的查看和修改方法》MySQL底层文件分为文本类(可安全查看/修改)和二进制类(禁止手动操作),以下按「查看方法、修改方法、风险管控三部分详细说明,所有操作均以Linux环境为例,需... 目录引言一、mysql 底层文件的查看方法1. 先定位核心文件路径(基础前提)2. 文本类文件(可直