算法第十三天-解码方法

2024-01-08 07:12

本文主要是介绍算法第十三天-解码方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解码方法

题目要求


解题思路

来自【宫水三叶】

基本分析

我们称一个解码内容为一个item
根据题意,每个item可以由一个数字组成,也可以由两个数字组成。
数据范围为100,很具有迷惑性,可能会有不少同学会想使用DFS进行暴力搜索。
我们可以大致分析一下这样子的做法是否可行:不失为一般性的考虑字符串s中的任意位置i,位置i既可以作为一个独立item,也可以与上一位置组成新item,那么相当于每个位置都有两种分割选择(先不考虑分割结果的合法性问题),这样子做法的复杂度是 O ( 2 n ) O(2^n) O(2n)的,当n范围是100时,远超我们计算机单秒运算量 ( 1 0 7 ) (10^7) (107)。及时我们将[判断分割结果是否合法]的操作放到暴力搜索过程中做剪枝,也与我们的单秒运算量相差很远。
递归的方法不可行,我们需要考虑递推的解法。

动态规划

这其实时一道字符串类的动态规划题,不难发现对于字符串s的某个位置i而言,我们只关心[位置i自己能否形成独立item]和[位置i能够与上一位置(i-1)能否形成item],而不关心i-1之前的位置。

有了以上分析,我们可以从前往后处理字符串s,使用一个数组记录以字符串s的每一位作为结果的解码方案数。即定义 f [ i ] f[i] f[i]为考虑前i个字符的解码方案数。
对于字符串s的任意位置i而言,其存在三种情况:

  • 只能由位置i的单独作为一个item,设为a,转移的前提是a的数值范围为[1,9],转移逻辑为f[i] = f[i-1].
  • 只能由位置i的与前一位置(i-1)共同作为一个item,设为b,转移的前提时b的数值范围为[10,26],转移逻辑为f[i] = f[i-2]
  • 位置i既能作为独立item也能与上一位置形成item,转移逻辑为f[i] = f[i-1] +f[i-2]
    因此,我们有如下转移方程:
    { f [ i ] = f [ i − 1 ] , 1 ≤ a ≤ 9 f [ i ] = f [ i − 2 ] , 10 ≤ b ≤ 26 f [ i ] = f [ i − 1 ] + f [ i − 2 ] , 1 ≤ a ≤ 9 , 10 ≤ b ≤ 26 \left\{\begin{aligned} f[i] = f[i-1],1\le a \le 9\\ f[i] = f[i-2],10\le b \le 26\\ f[i] = f[i-1]+f[i-2],1\le a \le 9,10\le b \le 26\\ \end{aligned} \right. f[i]=f[i1],1a9f[i]=f[i2],10b26f[i]=f[i1]+f[i2],1a9,10b26
    其他细节:由于本题存在前导零,而前导零属于无效item。可以进行特判,但个人习惯往字符串头部追加空格作为哨兵,追加空格既可以避免讨论前导零,也能使下标从1开始,简化f[i-1]等负数下标的判断。

代码

class Solution:def numDecodings(self, s: str) -> int:n = len(s)s = ' ' + sf =[0] *(n+1)f[0]=1for i in range(1,n+1):a = ord(s[i])-ord('0')b = (ord(s[i-1]) -ord('0')) * 10 + ord(s[i])-ord('0')if 0<a<=9:f[i] =f[i-1]if 10<=b<=26:f[i] +=f[i-2]return f[n]

复杂度分析

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

空间优化

不难发现,我们转移f[i]时只依赖f[i-1] 和 f[i-2]两个状态。因此我们可以采用与[滚动数组]类似的思路,只创建长度为3的数组,通过取余的方式来复用不再需要的下标。

代码

class Solution:def numDecodings(self, s: str) -> int:n = len(s)s = ' ' + sf = [0] * 3f[0] = 1for i in range(1,n + 1):f[i % 3] = 0a = ord(s[i]) - ord('0')b = ( ord(s[i - 1]) - ord('0') ) * 10 + ord(s[i]) - ord('0')if 1 <= a <= 9:f[i % 3] = f[(i - 1) % 3]if 10 <= b <= 26:f[i % 3] += f[(i - 2) % 3]return f[n % 3]

复杂度分析

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

这篇关于算法第十三天-解码方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582668

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp