算法第十三天-解码方法

2024-01-08 07:12

本文主要是介绍算法第十三天-解码方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解码方法

题目要求


解题思路

来自【宫水三叶】

基本分析

我们称一个解码内容为一个item
根据题意,每个item可以由一个数字组成,也可以由两个数字组成。
数据范围为100,很具有迷惑性,可能会有不少同学会想使用DFS进行暴力搜索。
我们可以大致分析一下这样子的做法是否可行:不失为一般性的考虑字符串s中的任意位置i,位置i既可以作为一个独立item,也可以与上一位置组成新item,那么相当于每个位置都有两种分割选择(先不考虑分割结果的合法性问题),这样子做法的复杂度是 O ( 2 n ) O(2^n) O(2n)的,当n范围是100时,远超我们计算机单秒运算量 ( 1 0 7 ) (10^7) (107)。及时我们将[判断分割结果是否合法]的操作放到暴力搜索过程中做剪枝,也与我们的单秒运算量相差很远。
递归的方法不可行,我们需要考虑递推的解法。

动态规划

这其实时一道字符串类的动态规划题,不难发现对于字符串s的某个位置i而言,我们只关心[位置i自己能否形成独立item]和[位置i能够与上一位置(i-1)能否形成item],而不关心i-1之前的位置。

有了以上分析,我们可以从前往后处理字符串s,使用一个数组记录以字符串s的每一位作为结果的解码方案数。即定义 f [ i ] f[i] f[i]为考虑前i个字符的解码方案数。
对于字符串s的任意位置i而言,其存在三种情况:

  • 只能由位置i的单独作为一个item,设为a,转移的前提是a的数值范围为[1,9],转移逻辑为f[i] = f[i-1].
  • 只能由位置i的与前一位置(i-1)共同作为一个item,设为b,转移的前提时b的数值范围为[10,26],转移逻辑为f[i] = f[i-2]
  • 位置i既能作为独立item也能与上一位置形成item,转移逻辑为f[i] = f[i-1] +f[i-2]
    因此,我们有如下转移方程:
    { f [ i ] = f [ i − 1 ] , 1 ≤ a ≤ 9 f [ i ] = f [ i − 2 ] , 10 ≤ b ≤ 26 f [ i ] = f [ i − 1 ] + f [ i − 2 ] , 1 ≤ a ≤ 9 , 10 ≤ b ≤ 26 \left\{\begin{aligned} f[i] = f[i-1],1\le a \le 9\\ f[i] = f[i-2],10\le b \le 26\\ f[i] = f[i-1]+f[i-2],1\le a \le 9,10\le b \le 26\\ \end{aligned} \right. f[i]=f[i1],1a9f[i]=f[i2],10b26f[i]=f[i1]+f[i2],1a9,10b26
    其他细节:由于本题存在前导零,而前导零属于无效item。可以进行特判,但个人习惯往字符串头部追加空格作为哨兵,追加空格既可以避免讨论前导零,也能使下标从1开始,简化f[i-1]等负数下标的判断。

代码

class Solution:def numDecodings(self, s: str) -> int:n = len(s)s = ' ' + sf =[0] *(n+1)f[0]=1for i in range(1,n+1):a = ord(s[i])-ord('0')b = (ord(s[i-1]) -ord('0')) * 10 + ord(s[i])-ord('0')if 0<a<=9:f[i] =f[i-1]if 10<=b<=26:f[i] +=f[i-2]return f[n]

复杂度分析

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

空间优化

不难发现,我们转移f[i]时只依赖f[i-1] 和 f[i-2]两个状态。因此我们可以采用与[滚动数组]类似的思路,只创建长度为3的数组,通过取余的方式来复用不再需要的下标。

代码

class Solution:def numDecodings(self, s: str) -> int:n = len(s)s = ' ' + sf = [0] * 3f[0] = 1for i in range(1,n + 1):f[i % 3] = 0a = ord(s[i]) - ord('0')b = ( ord(s[i - 1]) - ord('0') ) * 10 + ord(s[i]) - ord('0')if 1 <= a <= 9:f[i % 3] = f[(i - 1) % 3]if 10 <= b <= 26:f[i % 3] += f[(i - 2) % 3]return f[n % 3]

复杂度分析

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

这篇关于算法第十三天-解码方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582668

相关文章

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j