Cerebral Cortex:大尺度结构协变网络预测中老年成人的脑年龄

本文主要是介绍Cerebral Cortex:大尺度结构协变网络预测中老年成人的脑年龄,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》

一、背景
 
  老化是一个复杂而且动态的过程,伴随着不断累积的年龄效应,影响了人类的多个器官。这些器官的衰退引起了多种行为和临床的表现,比如心血管疾病,认知衰退等。虽然这些临床症状在老年时期才会显现,但是相应的变化在老年之前的很多年前就会开始发挥作用。越来越多的研究者开始寻找能够提前预示着老化的一些生物标记物,来防范于未然。
 
  老化的一个显著的变化是大脑组织的改变,这些改变已用MRI研究发现。此前,很多研究已经发现从大脑灰质体积,白质完整性,皮层厚度等很多方面发与于老化有关系。并且,这些正常的衰老变化在神经精神疾病和神经退行性疾病中会发生改变。进而提出了大脑加速化衰老的概念,并且假设这种衰老化的快慢能够用来区分正常人和患者。借助机器学习,研究人员不仅发现人脑的灰质体积和白质完整性能够预测人的生物学年龄,并且发现阿尔兹海默症,轻度认知障碍,精神分裂症等患者存在脑加速衰老的表现。
 
   近年来的研究发现,大脑不同区域之间共同作用形成了不同的大脑子网络。其中,结构协变网络就是其中一种研究大脑大尺度协作关系的研究手段。很多研究指出结构协变网络能够反映跨脑区的遗传发育和同步成熟。在此基础之上,很多研究也发现利用结构协变网络研究神经退行性疾病和神经精神病网络级上异常的可能性。近期,发表在《Cerebral Cortex》杂志上的一篇研究论文结合结构协变网络和机器学习来构建模型预测脑年龄,并且该模型能够检测出相关疾病的脑加速化衰老现象。
 
二、材料方法
 
1.被试
 
  研究包含了中老年精神疾病和神经退行性疾病患者,年龄范围在50-90岁。正常对照的总人数是909人,年龄范围在50-89岁,用来构建模型预测脑年龄。
 
2.数据采集
 
  采集了所有被试的T1加权图像,并且计算了每个被试的灰质体积图。
 
3.分析流程
 
  图1表示了文章的具体分析流程。首先计算完每个被试的灰质体积图。将所有的被试串联在一起,用ICA的方法划分团块。这里由于ICA需要事先确定主成分个数,所以设定一个区间。在训练集内,用空间回归的方法计算每个网络整合系数(beta系数)。这些网络的整合系数被进一步当成特征来预测大脑的年龄。在确定了最优的成分数之后,训练集得到的ICA的成分图被当作先验模板来计算测试集和临床疾病数据的网络整合系数。然后,将测试集和临床疾病数据的网络整合系数送入训练好的模型进行预测。
在这里插入图片描述

4.训练集ICA具体分析流程
 
  利用空间ICA的方法好处在于不用事先预设网络的模板。本文利用FSL软件进行ICA网络的划分。将4D的被试体素的图像分解成被试成分的混合矩阵以及成分数*体素的源矩阵。混合矩阵表示每个被试不同成分的权重,源矩阵表示了不同成分的空间分布。这里设置的成分数范围是6-150,间隔是10。每次ICA 分析完之后,都会人工检查,将噪声成分和非灰质区域的成分去掉。为了显示不同成分的空间分布,每个成分的空间分布显示时设定的阈值时Z分数大于4。
 
5.计算不同网络的整合系数
 
  作者采用了空间回归的方法计算结构协变网络的整合系数。利用广义线性模型计算了4D GMV数据和结构协变的成分的回归分析。系数被当成对应成分的整合系数。高的整合系数代表了对应成分在个体水平上的高表达。
统计分析
 
6.对临床信息和人口学信息急性相应的统计分析
7.构建线性模型来预测脑年龄

在这里插入图片描述
a表示ICA的成分数,x表示网络的整合程度。作者用了LASSO模型来预测该模型中的系数。
 
  为了评估不同ICA成分数对结果的影响,对每个成分数,采用十折交叉验证(训练集内进行)的方法来判断模型的好坏。其中最优的成分数确定为使得十折交叉验证中最小均方误差最小的成分数值。模型的好坏用平均绝对误差(MAE)和平均确定系数(R2)。一旦选择好参数,将所有的训练集用来训练模型,然后用于测试集和疾病数据。训练集得到的ICA成分图,将被当作先验信息来选择测试集和疾病数据的对应网络。
 
  其中,用在疾病组中时,确定了每个患者的脑年龄差距:实际年龄和预测你南岭的差值。并且进一步用ANCOVA的方法来比较不同组中脑年龄差距是否存在显著差异,年龄性别教育年限等被当作协变量。同时,作者还同样的方法分析了不同网络的整合系数在不同组中的差异。
 
8.和症状的相关性
 
  在病人组中,分别计算了每个患者的脑年龄差距和临床量表之间的偏相关系数。
 
9.排除可能的影响因素
 
  为了排除其他因素对结果的影响,作者还做了额外的两个分析。首先排除样本的异质性,将第一个中心数据单独拿出来,打乱成训练集和测试集,后见模型进行分析。第二,选择不同的回归模型(ridge 回归和弹性网络回归)。
 
三、结果
 
1.被试的人后学信息在表1中。
在这里插入图片描述
  作者探究了选择不同的成分数时模型的好坏。最终选定的最右成分数是40,MAE=3.97,R2=0.66(图2)。图3展示了不同的ICA成分的空间分布。将训练好的模型运用到测试集的结果如表2和图4所示。在测试集上也得到了比较好的结果MSE=3.66,R2=0.64。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  然后,在疾病数据上发现,除了MDD患者外,疾病组的脑年龄差距显著的比正常对照大(图5)。
在这里插入图片描述
在这里插入图片描述

  作者没有发现脑年龄差距和临床量表的相关性。
  统计不同网络的整合系数时发现,有12网络和整合系数在疾病组和正常对照间存在差异(FDR 0.05校正),结果如表3和图6中所示。
在这里插入图片描述
在这里插入图片描述

  除此之外,作者发现被试的异质性和模型的选择对结果没有显著的影响,证明本文所选的方法稳定可靠。
 
四、结论
 
  本文探究了利用VBM结构协变网络结合机器学习方法进行脑年龄预测的可能性,不仅得到了稳定可靠的预测模型,并且能够很好地揭示了精神疾病和神经退行性疾病脑加速衰老的疾病特征。

参考文献:Large-Scale Structural Covariance Networks Predict Age in Middle-to-Late Adulthood: A Novel Brain Aging Biomarker, Cerebral Cortex, 2020;00: 1–19

注:参考文献原文请加赵老师微信索要(微信号:kervin_zhao)

这篇关于Cerebral Cortex:大尺度结构协变网络预测中老年成人的脑年龄的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582378

相关文章

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

结构体和联合体的区别及说明

《结构体和联合体的区别及说明》文章主要介绍了C语言中的结构体和联合体,结构体是一种自定义的复合数据类型,可以包含多个成员,每个成员可以是不同的数据类型,联合体是一种特殊的数据结构,可以在内存中共享同一... 目录结构体和联合体的区别1. 结构体(Struct)2. 联合体(Union)3. 联合体与结构体的

PostgreSQL如何查询表结构和索引信息

《PostgreSQL如何查询表结构和索引信息》文章介绍了在PostgreSQL中查询表结构和索引信息的几种方法,包括使用`d`元命令、系统数据字典查询以及使用可视化工具DBeaver... 目录前言使用\d元命令查看表字段信息和索引信息通过系统数据字典查询表结构通过系统数据字典查询索引信息查询所有的表名可

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边